FREQUENCY INVERTER

E2000

0.4kW - 400kW (IP20)

Safety instructions Installation & operating manual

Содержание

<u>I. Безопасность</u>	4
1.1 Меры предосторожности	4
1.2 Перед использованием	10
1.3 Стандарты	12
II. Продукция	12
2.1 Система обозначения моделей	12
2.2 Система обозначения дополнительных функций	13
2.3 Шильдик	13
2.4 Внешний вид	14
2.5 Технические характеристики	15
III. Панель управления	17
3.1 Панель управления	17
3.2 Конструкция панели управления	18
3.3 Функции панели управления	19
3.4 Изменение значений параметров	19
3.5 Коды и группы параметров	20
3.6 Дисплей	21
IV. Установка и подключение	22
4.1 Установка	22
4.2 Подключение	22
4.3 Измерение параметров сети	24
4.4 Функции терминала управления	26
4.5 Провода, рекомендуемые для подключения	29
4.6 Заземление	29
4.7 Схема подключения	30

4.8 Основные методы подавления шума	31
V. Управление и простой старт	36
5.1 Основные режимы	36
5.2 Панель управления и способы управления	37
5.3 Примеры использования инвертора	39
VI. Программируемые параметры	45
6.1 Основные параметры	45
6.2 Параметры управления	57
6.3 Многофункциональные входные и выходные терминалы	70
6.4 Аналоговый вход и выход	80
6.5 Импульсный вход/выход	84
6.6 Многоскоростной режим управления	87
6.7 Вспомогательные функции	90
6.8 Неисправности и защита	95
6.9 Параметры электродвигателя	99
6.10 Параметры связи	104
6.11 Параметры PID-регулирования	107
6.12 Параметры управления крутящим моментом	112
6.13 Параметры второго мотора	114
6.14 Отображаемые параметры	114
Приложение 1 Устранение неисправностей	117
Приложение 2 Схемы подключения системы водоснабжения	119
Приложение 3 Продукция и устройство	122
Приложение 4 Выбор тормозного сопротивления	125
Приложение 5 Руководство по коммуникации	126
Приложение 6. Сводная таблица кодов	137

Безопасность

Внимательно прочитайте это руководство, и убедитесь, что у вас есть полное понимание. Установка, ввод в эксплуатацию или техническое обслуживание может выполняться в соответствии с данным разделом. EURA не несет ответственности за любой ущерб или убытки, вызванные неправильной эксплуатацией.

1.1 Меры предосторожности

1.1.1 Область применения

Данное оборудование предназначено для управления работой промышленных асинхронных электродвигателей переменного тока.

1.1.2 Определения

Danger: возможны серьезные травмы или смерть если не следовать соответствующим требованиям.

Warning: возможны физические травмы или повреждение устройства если не следовать соответствующим требованиям.

Note: Возможно причинение боли если не следовать соответствующим требованиям.

Qualified electricians: Люди, работающие с устройством должны пройти обучение по безопасности при работе с электрооборудованием, получить сертификат и получить допуск по работе с электрооборудованием, чтобы избежать любой чрезвычайной ситуации

1.1.3 Предупреждающие знаки

Знаки предупреждают об осторожности и условиях, при которых могут произойти серьезные травмы, смерть и / или к повреждение оборудования, а также советы о том, как избежать опасности. Следующие символы предупреждения используются в данном руководстве.

Пентаграмма	Название	Инструкция	Сокращение
Danger	Электричская опасность	Серьезные телесные повреждения возможны если не следовать следующим требованиям.	A
Hot sides	Горячие части	Некоторые части устройства могут нагреваться. Не прикасаться.	
Warning	Предупреждение	Устройство может быть по- вреждено если не следовать определенным требовани- ям.	<u> </u>
Do not	Электростатический разряд	Возможно повреждение печатной платы если не следовать определенным требованиям.	
Note	Примечание	Возможно причинение боли если не следовать соответ- ствующим требованиям.	Note

1.1.4 Меры предосторожности

•	Только квалифицированные электрики допускаются к работе с частотным
	преобразователем.

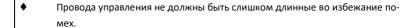
Не прокладывать провода, не осматривать, и не производить замену компонентов при подключенном питании. Перед прокладкой проводов и проверкой убедитесь, что питание отключено и обязательно ожидайте определенное время или пока напряжение на шине постоянного тока не станет меньше 36V. Ниже таблица времени ожидания:

Модель преобразователя	Мин. расчетное время ожидания
400V 1.5kW – 110kW	5 минут
400V 132kW – 315kW	30 минут
400V above 350kW	45 минут

 Корпус радиатора может нагреваться во время работы. Не прикасайтесь, что бы не обжечься.

- ◆ Не ремонтируйте преобразователь самостоятельно; в противном случае возможен пожар, может произойти поражение электрическим током или другие травмы.
- Никогда не прикасайтесь силовых питающих клемм инвертора, чтобы избежать поражения электрическим током.

- ♦ Нельзя подавать питание на клеммы U, V. W или /// РЕ/Е.
- Нельзя устанавливать преобразователь под прямыми солнечными лучами, не закрывайте вентилируемые отверстия.
- Все защитные крышки должны быть хорошо закреплены, прежде чем к преобразователю будет подключено питание, чтобы избежать поражения электрическим током.


 Электрические части и компоненты внутри преобразователя электростатичны. Сделайте замеры во избежание электростатического разряда.

1.1.5 Доставка и установка

- Устанавливайте преобразователь на огнеупорный материал и храните инвертор в стороне от горючих материалов.
- Подключайте дополнительные тормозные элементы (тормозные резисторы, тормозные блоки или блоки с обратной связью) в соответствии с электрической схемой.
- Не используйте инвертор, если есть какие-либо повреждения или отсутствуют компоненты преобразователя.
- Не прикасайтесь к преобразователю мокрыми предметами или руками, в противном случае может произойти поражение электрическим током.
- ◆ При монтаже используйте правильный инструмент, чтобы обеспечить безопасность и нормальную работу, и избежать травм и смерти. Монтажники должны иметь защиту, такую как обувь и спецодежду.
- Не допускайте ударов и вибрации во время перевозки и монтажа.
- ♦ Не перемещайте преобразователь за крышку во избежание ее отрыва.
- Устанавливайте в местах недоступных для детей и посторонних лиц.

- ◆ Потеря мощности может быть связана с установкой привода на большой высоте (более 1000 м). Т.к. охлаждающий эффект привода ухудшается из-за разряженного воздуха, как показано на рис.1-1. Здесь отображена зависимость между высотой и номинальным током привода.
- Не допускайте попадания вовнутрь преобразователя винтов, кабеля и других токопроводящих предметов.
- Заземление должно быть обеспечено с сопротивлением, не превышающим 4Ω; необходимо заземлять двигатель и преобразователь отдельно. Заземление с последовательным соединением запрещено.
- Клеммы R, S и T это клеммы питания, а U, V и W клеммы мотора. Подключите входящие питающие кабели и кабели мотора в соответствии со схемой; в противном случае может произойти повреждение преобразователя.
- ◆ Если преобразователь установлен в шкафу управления, то необходимо обеспечить вентиляцию и преобразователь должен быть установлен вертикально (как показано на Рис. 1-2). Если в одном шкафу установлено несколько преобразователей, чтобы обеспечить вентиляцию, устанавливайте преобразователи бок о бок. Если необходимо установить несколько инверторов сверху и

- Перед использованием привода проверьте изоляцию двигателей, особенно, если они используются первый раз или хранились долгое время. Это уменьшит риск повреждения привода от плохой изоляции мотора.
- ◆ Не подключайте варистор или конденсатор к выходным клеммам преобразователя, это может привести к повреждению преобразователя; Кроме того, не следует устанавливать выключатель или контактор на выходе привода, как показано на рис 1-4.

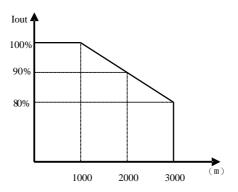


Рис. 1-1 Потеря мощности привода в зависимости от высоты

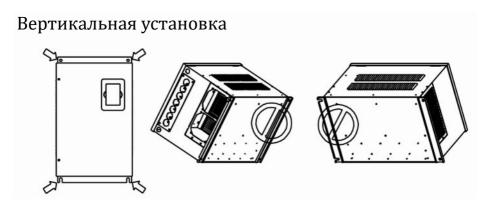


Рис. 1-2 Вертикальная установка

Рис. 1-3 Расположение в шкафу

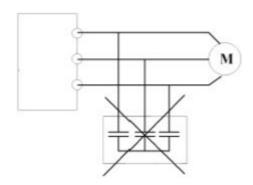


Рис. 1-4 Запрещается подключать конденсаторы.

1.2 Перед использованием

1.2.1 Распаковка

Проверьте по списку после получения продукции:

- 1. Убедитесь что отсутствуют повреждения и намокания упаковки. В противном случае обратитесь к агенту или в офис компании.
- 2. Проверьте информацию на маркировочной этикетке на внешней стороне упаковки, чтобы убедиться, что преобразователь правильного типа. Если нет, пожалуйста, свяжитесь с местным дилером или обратитесь в офис компании.

- Убедитесь, что нет никаких признаков воды внутри упаковки и нет признаков повреждения преобразователя. Если нет, пожалуйста, свяжитесь с местным дилером или обратитесь в офис компании.
- 4. Проверьте информацию на шильдике на внешней стороне преобразователя, чтобы убедиться, что преобразователь правильного типа. Если нет, пожалуйста, свяжитесь с местным дилером или обратитесь в офис компании.
- 5. Проверьте наличие аксессуаров внутри упаковки (в том числе руководство пользователя, клавиатуры управления и карты расширения). Если нет, пожалуйста, свяжитесь с местным дилером или обратитесь в офис компании.

1.2.2 Условия применения

Проверьте двигатель, прежде чем начать использовать инвертор:

- 1. Проверьте тип нагрузки, чтобы убедиться, что нет перегрузки инвертора во время работы, и нет необходимости замены инвертором большей мощности.
- 2. Убедитесь, что фактический ток двигателя меньше, чем номинальный ток инвертора.

- 3. Проверьте, чтобы точность управления нагрузкой соответствовала инвертору.
- 4. Убедитесь, что входящее напряжение питания соответствует номинальному напряжению инвертора.
- 5. Проверьте, нужна ли для связи дополнительная плата.

1.2.3 Окружающая среда

Проверьте по списку перед установкой и применением:

Убедитесь, что температура окружающего воздуха вокруг преобразователя ниже 50 °C.
 Уменьшите мощность на 3% на 1°C превышения этого значения. Кроме того, преобразователь не может быть использован, если температура окружающей среды выше 60 °C.

<u>Примечание:</u> для инвертора установленного в шкафу, температура о окружающего воздуха означает температуру воздуха внутри шкафа.

2. Убедитесь, что температура окружающего воздуха вокруг преобразователя выше -10 °C. Если нет, включите отопление.

<u>Примечание:</u> для инвертора установленного в шкафу, температура окружающего воздуха означает температуру воздуха внутри шкафа.

- 3. Убедитесь, что высота места установки ниже 1000 м. Если превышает, уменьшите мощность на 1% на каждые дополнительные 100 м.
- 4. Убедитесь, что влажность в месте установки ниже 90%, конденсат не допускается. Если нет, обеспечьте дополнительную защиту инвертора.
- 5. Убедитесь, что на инвертор не попадают прямые солнечные лучи, и исключено попадание посторонних предметов. Если нет, примите дополнительные защитные меры.
- 6. Убедитесь, что отсутствует токопроводящая пыль или горючий газ в месте установки. Если нет, примите дополнительные защитные меры.

1.2.4 Проверка установки

После установки проверьте по списку:

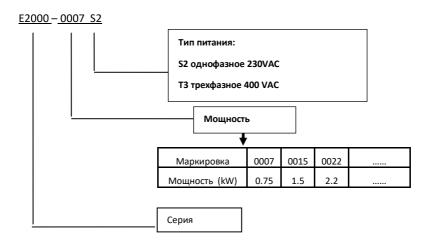
- 1. Убедитесь, что входные и выходные кабели соответствует реальной нагрузке.
- 2. Убедитесь, что аксессуары преобразователя правильно установлены. Кабели должны быть соединены с каждым компонентом (в том числе входной дроссель, входные фильтры, выходные дроссели и выходные фильтры, дроссели постоянного тока, тормозной блок и тормозной резистор).
- 3. Убедитесь, что преобразователь установлен на поверхности из негорючих материалов и греющиеся аксессуары (дроссели и тормозные резисторы) находятся вдали от легковоспламеняющихся материалов.

- 4. Убедитесь, что кабели управления и силовые кабели проложены отдельно и их направление соответствует требованию по электромагнитной совместимости.
- 5. Убедитесь, что все системы заземлены в соответствии с требованиями.
- 6. Убедитесь, что во время установки свободное пространство достаточное в соответствии с инструкциями руководства.
- 7. Убедитесь, что установка соответствует инструкции в руководстве. Привод должен быть установлен в вертикальном положении.
- 8. Убедитесь, что внешние клеммы плотно затянуты с нужным усилием.
- 9. Убедитесь, что винты, кабели и другие проводящие предметы, не оставлены в преобразователе после монтажа.

1.2.5 Ввод в эксплуатацию

Проведите окончательную проверку выполнив следующие шаги:

- 1. Выберите тип двигателя, установите правильные параметры двигателя и выберите режим управления инвертора в соответствии с фактическими параметрами двигателя.
- 2. Автоматическая настройка. Если это возможно, отключите нагрузку двигателя, чтобы начать динамическую автонастройку. Если нет возможности отключить нагрузку, то доступна статическая автонастройка.
- 3. Отрегулируйте время разгона / замедления в соответствии с фактической нагрузкой.
- 4. Запустите мотор и убедитесь, что направление вращения правильное. Если нет, то измените направление вращения, изменив подключение двигателя.
- 5. Установите все параметры управления, а затем можно начинать работу.


1.3 Стандарты

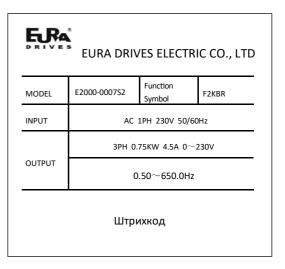
- IEC/EN 61800-5-1: 2007 Adjustable speed electrical power drive systems safety requirements.
- IEC/EN 61800-3: 2004/ +A1: 2012 Adjustable speed electrical power drive systems-Part 3: EMC product standard including specific test methods.

II Продукция

Данная инструкция предназначена для ознакомления с правилами установки, подключения и эксплуатации преобразователя частоты серии E2000. Пожалуйста, обратитесь к производителю или дилеру в случае какой-либо неисправности во время работы.

2.1 Система обозначения моделей

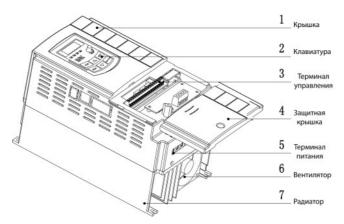
2.2 Система обозначения дополнительных функций


DF2YKBR Встроеный ЕМІ фильтр Нет Фильтр встроен Встроеный тормозной резистор Тормозной резистор встроен Панель с потенциометром Панель без потенционометра Тип панели управления Панель не съемная Маркировка Тип связи Связь отсутствует MODBUS терминал Конструктивный код Маркировка Настенный Нет Напольный

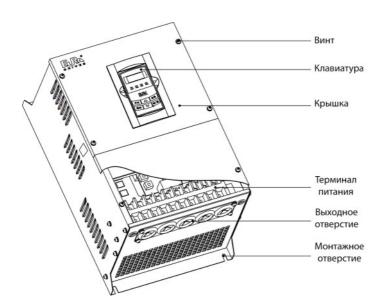
2.3 Шильдик

Для примера рассмотрим преобразователь серии E2000 мощностью 0,75кВт с однофазным входом, пример шильдика на Рис.1-1.

1Ph: однофазный вход; диапазон входного напряжения и номинальная частота 230В, 50/60Гц.


3Ph: трёхфазный выход; номинальный ток на выходе и мощность: 4,5A, 0,75кВт; диапазон частоты на выходе: 0,00 \sim 650,0 Гц.

2.4 Внешний вид


Исполнением корпуса преобразователи частоты серии **E2000** разделяются на пластиковые и металлические корпуса, настенные и кабинетного типа.

Качественные углеродистые материалы, используемые для изготовления пластиковых корпусов, придают им прочность и привлекательный внешний вид.

Внешний вид и конструкция преобразователя E2000-0007S2 представлена на рисунке.

На металлическом корпусе с лицевой стороны нанесен пластик, методом порошкового напыления на поверхности, имеется съемная передняя крышка, для удобства проводки и обслуживания.

2.5 Технические характеристики

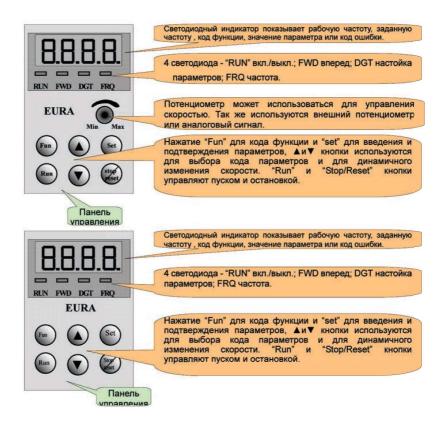
Таблица2-1 Технические характеристики инверторов серии Е2000

	Наименование	Описание			
		трехфазное 380-480V (+10%, -15%)			
Вход	Напряжение	однофазное 220-240V ±15%			
	Частота	50/60Hz			
	Напряжение	трехфазное 0-INPUT (V)			
Выход		0.50~650.0Hz (В режиме управления SVC, макс. частота			
	Частота	должна быть ниже, чем 500Hz).			
		800~16000 Hz; фиксированная несущая частота и			
	Несущая частота	случайная несущая частота может быть выбрана F159.			
	Townson upornovius upororu	Цифровая регулировка: 0.01Hz, аналоговая			
	Точность настройки частоты	регулировка: тах частота Х 0.1%			
	Режим управления	Для индукционных двигателей: SVC управление (векторное управление), V/F управление, VC управление (Векторное управление с обратной связью).			
		Для двигателей PMSM: SVC управление (векторное управление)			
		0.5 Hz / 150% (SVC), 0 Hz/180% (VC),			
	Начальный крутящий момент	5% от номинальной скорости/100% от номинального			
		крутящего момента (PMSM SVC).			
	Масштаб контроля скорости	1:100 (SVC), 1:1000 (VC), 1:20 (in PMSM SVC).			
	Погрешность скорости	±0.5%(SVC), ±0.02%(VC)			
	Погрешность крутящего	±5%			
	момента				
Настройки	Перегрузочная способность	Перегрузка по току 150% в течение 60 секунд.			
	Изменение крутящего	Автоматическое, Ручное (предустановлено 1-20			
	момента	настроек).			
	ME	3 режима: линейная, квадратичная и предустановлен-			
	V/F зависимость	ные V/F кривые.			
	Режим запуска	Прямой запуск, подхват налету (V/F контроль).			
		частота: 0.20-50.00 Hz,			
	Торможение	время: 0.00~30.00s			
		Диапазон частоты: min частота ~ max частота, время			
	Контроль частоты	разгона/остановки: 0.1~3000s.			
	Автоматический и	Может быть реализован 15-ти скоростной режим с			
	многоскоростной режим	автоматическим или терминальным управлением.			
	Pernaguu vă DID naminara	легко реализовать систему для управления процессом			
	Встроенный PID регулятор	с обратной связью.			
		При изменении напряжения питания, частота			
	Автоматическая регулировка	модуляции может регулироваться автоматически,			
	напряжения (AVR)	таким образом выходное напряжение остается			
		неизменным.			

	Изменение частоты	Потенциометр или внешний аналоговый сигнал (0~5V, 010~V, 020~mA); Панель управления кнопки ▲/ ▼ внешнее логическое управление и			
		автоматическая настройка.			
	Команда Пуск/Стоп	Клавиатура панели управления, терминал			
Функции		управления и RS485.			
управления	Каналы управляющих команд	3 вида каналов: от панели управления, терминала и MODBUS.			
		Источники задания частоты: цифровой сигнал,			
	Источники частот	аналоговый сигнал по току или по напряжению, MODBUS.			
	Дополнительные источники частот	7 видов дополнительных источников частот.			
Доп. опции	Встроенный EMI фильтр, встро управления.	оенный тормозной модуль, Modbus, выносная панель			
Защитные Функции	Защита от: обрыва фазы (вход и выход), пониженного напряжения, перегрузок по току и напряжению, генераторного перенапряжения (результат торможения), перегрева, неполадок периферийной аппаратуры, внешних помех.				
		ывает рабочую выходную частоту, ток и напряжение;			
Дисплей		ки; порядковый номер параметра; четыре			
	светодиодных индикатора по	казывают состояние преобразователя.			
	D	Внутри помещения защищённого от прямых			
	Расположения преобразо- вателя	солнечных лучей, обеспечивающее отсутствие пыли, едких газов, легковоспламеняющихся газов,			
	вателя				
Окружающая среда	Температура воздуха	коррозионных веществ, и пр. -10C°~50+C°			
		менее 90% (не допускается образование			
	Влажность	конденсата).			
	Вибрация	Менее 0.5g			
	Высота над уровнем моря	1000m или ниже.			
Степень защиты	IP20				
	1				

Мощность

двигателя


0.4~400kW

III. Панель управления

Клавиатура и дисплей установлены на панели управления. Есть два вида панелей (с потенциометром и без), которые используются в инвертерах серии E2000. См. Рис.3-1.

3.1 Панель управления

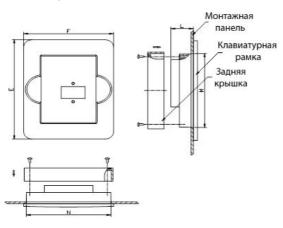
Панель имеет 3 секции: дисплей, секция индикаторов состояния и клавиатура, см. рис. 3-1.

Инструкция для панели управления:

Панель управления для инвертеров 22kW и ниже 22kW не съемная. Выберите выносную панель AA-B или A6-1-B для удаленного управления, которая подключается через 8-ми жильный телефонный кабель.

Панель управления для инвертеров 30kW и более 30kW съемная. Выберите выносную панель A6-1-A для удаленного управления, которая подключается через 8-ми жильный телефонный кабель.

3.2 Конструкция панели управления


Чертеж панели

2. Размеры (mm)

Код	Α	В	С	D	Н	Посадочные размеры
AA	76	52	72	48	24	73*49
A6-1	124	74	120	70	26	121*71

3. Схема крепления панели

4. Посадочные размеры (mm)

Размеры панели Код				Посадочный размер		
код	E	F	L	<u>N</u>	M	
AA	109	80	20	75	81	
A6-1	170	110	22	102	142	

5. Порт для выносной панели управления

Pins	1	2	3	4	5	6	7	8
8 жил	Потенциометр	5V	3	Заземление	Сигнал 1	Сигнал 2	Сигнал 3	Сигнал 4

3.3 Функции панели управления

Все кнопки панели доступны для пользователя. См. Таблицу 3-1.

Таблица 3-1 Клавиши

Клавиша	Название	Описание			
Fun	Fun	Переключение состояния дисплея.			
Set	Set	Вызов и сохранение данных.			
	Up	Увеличение значения (скорости или параметра).			
	Down	Уменьшение значения (скорости или параметра).			
Run	Run	Пуск!			
Stop/	Stop or reset	Стоп; сброс ошибки; выбор дискретности при изменении параметров.			

3.4 Изменение значений параметров

Инвертер имеет множество параметров для управления режимами работы, которые можно менять. Если пользователь устанавливает пароль (F107=1), то сначала вводится пароль. Для того, чтобы установить параметры после отключения питания или включенной блокировке необходимо войти в параметр F100 согласно таблице 2-2 и ввести правильный код. В настройках по умолчанию пароль пользователя отключен, и установка параметров производится без ввода пароля.

таблица 3-2 Этапы изменения значений параметров

Шаг	Клавиша	Описание	Дисплей
1	Fun	Нажать "Fun" для отображения кода.	F100
2	▲ or ▼	Нажать "Up" или "Down" для выбора кода.	FII4
3	Set	Смотрим значение параметра.	5.0
4	▲ or ▼	Редактируем значение параметра.	9.0
	Set	Сохраняем изменение.	5000
5	Fun	Отображает текущий код.	FII4

Выше перечисленные шаги выполняются когда выключена нагрузка инвертора.

3.5 Коды и группы параметров

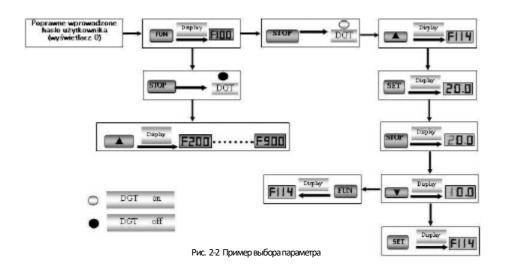

Всего более 300 параметров (кодов) доступны для пользователя, они разделены на 10 групп как показано в таблице 3-3.

Таблица 3-3 Коды групп

Название группы	Диапазон кодов	Название группы	Диапазон кодов
Основные параметры	F1	Праметры двигателя	F8
Параметры управления	F2	Параметры связи	F9
Входной и выходной терминалы	F3	Параметры PID регулирования	FA
Параметры аналогового сигнала и импульсный вход/ выход	F4	Управление крутящим моментом	FC
Многоскоростные параметры	F5	Праметры второго двигателя	FE
Вспомогательные функции	F6	Параметры дисплея	НО
Контроль времени и параметры защиты	F7		

Нажатие клавиши «Fun» панели управления позволяет перейти к списку программируемых параметров. Выбор необходимого параметра производится клавишами « ▲ » и « \blacktriangledown ».

Когда горит индикатор панели управления «DGT» клавиши « \blacktriangle » и « \blacktriangledown » последовательно перебирают параметры определенной группы. Если однократно нажать клавишу «Stop/Reset», индикатор «DGT» погаснет и клавиши « \blacktriangle »/« \blacktriangledown » будут перебирать группы параметров (Рис 2-2).

3.6 Дисплей

Таблица 3-4 Показания дисплея и их описание

Индикация	Описание
HF-0	При нажатии клавиши «Fun» в режиме ожидания дисплей примет данное значение, которое указывает на то, что толчковый режим активен Но HF-0 отобразится только после того как вы изменяете значение F132.
-HF-	Состояние сброса.
-пг-	После перезагрузки на дисплее будет отображена установленная частота.
OC, OC1, OC2, OE, OL1, OL2, OH, LU, PFO, PF1,CE	Код ошибки: «повышенный ток», «повышенный ток1», «повышенный ток2», «повышенное напряжение», «перегрузка инвертора», «перегрузка мотора», «перегрев», «низкое напряжение на входе», «обрыв фазы на входе» и «ошибка связи» соответственно.
AErr, EP, nP, Err5	Разрыв аналоговой линии, отсутствует нагрузка, контроль давления, неверные параметры PID.
ovEr, br1, br2	(текстильная промышленность) полный челнок, обрыв пряжи, пряжа запутана.
ESP	Отображается во время терминального управления в момент нажатия кнопки stop/reset или аварийной остановки.
F152	Программируемый параметр.
10.00	Текущая рабочая частота, значение программируемого параметра и т.д.
50.00	Моргающее значение запрограммированной частоты в режиме ожидания.

A100, U100	Выходной ток (100A) и выходное напряжение (100B). Округляется до десяти, если ток ниже 100A
b*.*	Отображается значение обратной связи PID.
0*.*	Установленное PID значение.
L***	Линейная скорость
H ***	Температура радиатора

IV. Установка и подключение

4.1 Установка

Преобразователь должен быть установлен вертикально, как показано на Рис.3-1.

Вокруг преобразователя должны быть обеспечены соответствующие зазоры для вентиляции.

Таблица 4-1 Рекомендуемые зазоры

Модель	Зазоры				
Подвесной (<22kW)	A≥150mm	B≥100mm			
Подвесной (≥22kW)	A≥200mm	B≥100mm			
Шкаф (132~400kW)	C≥200mm	D≥100mm			

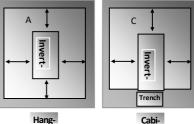
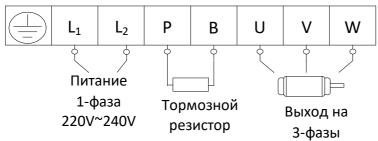



Рис. 3-1 Схема установки

4.2 Подключение

- Двигатель должен быть заземлен.
- В инверторах мощностью ниже 22 кВт тормозной блок встроенный. Если нагрузка инерции умерена, то достаточно подключить только тормозное сопротивление.

Силовой терминал однофазного инвертора 230V 0.4- 0.75kW.

Силовой терминал однофазного инвертора 230V 1.5~2.2kW и 3-х фазного 400V 0.75kW~22kW.

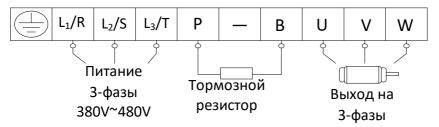


Схема клеммной колодки 3-х фазных инверторов 400V до 30kW.

Примечание: клеммы L1/R, L2/S однофазных инверторов 230V 1.5kW и 2.2kW подключаются к сети 230V; клемма L3/T не подключается. На инверторах до 11 кВт включительно клемма "-" отсутствует.

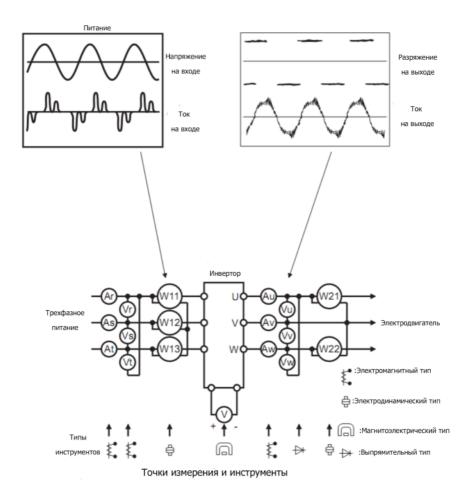
(Это только схемы, реальные терминалы могут отличаться от них.)

Силовой терминал

Терминал	Обозначение	Описание
Входящее питание	R/L1, S/L2, T/L3	Трехфазный вход 400В ∼ (R/L1 и S/L2 однофазный вход)
Выходные	U, V, W	Выход для подключения электродвигателя
Заземление	/PE/E/	Заземление
	<i></i>	Клеммы подключения тормозного резистора (* выводы Р и В не используются без встроенного модуля торможения)
Терминалы		Выход шины постоянного тока
торможения	P, -	Подключение к внешнему тормозному модулю: "Р" подключается к входной клемме "Р" или "DC +" тормозного блока, "-" Подключается к входу терминала тормозного блока "N" или "DC-".

Терминал управления:

TA	ТВ	TC	DO1	DO2	24V	CM	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	10V	Al1	AI2	GND	AO1	AO2
GND	5V	A+	B-																	



Примечание:

У инверторов мощностью до 22kW включительно с функцией F1 нет клемм DO2 и DI7, DI8.

4.3 Измерение параметров сети

Поскольку напряжение и ток на входе и выходе преобразователя синусоидальные, результат измерения зависит от измерительного инструмента и места измерения. Измеряйте следующие контуры рекомендованным инструментом.

Наименование	Точки измерения	Измерительный	Примечание (Справочные
Входное напряжение V1	Между R-S,S-T, T-R	инструмент Электромагнитный вольтметр	величины) 400V±15%, 230V±15%
Входной ток 11	Линия R, S, и T	Электромагнитный амперметр	
Мощность питания Р1	На клеммах R, S и T, между R-S, S-T и T-R	Электродинамический ваттметр	P1=W11+W12+W13 (3- wattmeter method)
Коэффициент мощности Pf1	После измерения напряжени мощности инвертора [Для 3-:	ия, тока и мощности рассчит	
Напряжение на выходе V2	Между U-V, V-W и W-U	Выпрямительный вольтметр (измерение электромагнитным вольтметром не возможно)	Разница между фазами ±1% от максимального выходного напряжения.
Ток на выходе 12	Контуры U, V и W	Электромагнитный амперметр	Ток должен быть равен или меньше, чем номинальный ток инвертора. Разница между фазами составляет 10% или ниже номинального тока инвертора.
Мощность на выходе Р2	На клеммах U, V, W и между U-V, V-W,W-U	Электродинамический ваттметр	P2 = W21 + W22 2-wattmeter method
Коэффициент выходной мощности Pf2	Рассчитывается аналогично F	Pf1: $Pf2 = -$	$\frac{P2}{\sqrt{3}V2 \times I2} \times 100\%$
Выход преобра- зователя	Между Р+ (Р)и -(N)	мультиметр	Напряжение постоянного тока, значение
Power supply of	Между 10V-GND	мультиметр	DC10V±0.2V
control PCB	Между 24V-CM	мультиметр	DC24V±1.5V
Аналоговый выход AO1	Между AO1-GND	мультиметр	Примерно DC10V на максимальной частоте. $\sqrt{2} imes V1$
выход АСТ	Между AO2-GND	мультиметр	Примерно DC 4~20mA ана максимальной частоте.
Аварийный сигнал	Между ТА/ТС Между ТВ/ТС	мультиметр	Между <normal> <abnormal> TA/TC: Discontinuity Continuity Across TB/TC: Continuity Discontinuity</abnormal></normal>

4.4 Функции терминала управления

Для управления инвертором необходимо корректно использовать терминалы управления, для чего они должны быть соответственно настроены. В этой главе описаны основные функции управления терминалами.

Таблица 4-3 Функции терминала управления

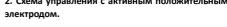
Контакт	Тип	Описание	Функция	
DO1		Многофункцио нальный выход 1	Если данная функция активна, то напряжение между данным терминалом и СМ равно 0V; Если инвертер остановлен, то напряжение равно 24V. Если DO1 используется как высокочастотный выход, то максимальная частота на выходе 100КHz (не подключайте промежуточное реле).	Значения данных контактов задаются
DO2 ^{Note}		Многофункцио- нальный выход 2	Если данная функция активна, то значение между данным терминалом и CM равно 0V; Если инвертер останов- лен, то значение равно 24V.	программируемы- ми параметрами
TA TB	Выход- ной сигнал	Релейные контакты	TC – общий контакт; ТВ-ТС – нормально закрытый контакт; ТА-ТС – нормально открытый контакт. Характеристики 10A/125VAC, NO/NC 3A 250VAC/30VDC.	
AO1			Предназначен для подключения внешне спидометра, минусовая клемма которого контакту GND. См. F423 ∼ F426.	• •
АО2Нап ряжени е/ток на выходе		Ток на выходе	Предназначен для подключения внешне минусовая клемма которого подключает Cm.F427 \sim F430.	
10V	Анало- говый источ- ник пита- ния	Внутренний источник питания	Внутренний источник питания инвертора Может использоваться как сигнал управл	
Al1		Аналоговый вход	Используется для регулировки скорости вым сигналом. Диапазон: 0~10В. Заземлю	
AI2	Входя- щий сигнал	Напряжение / ток аналоговый вход	Используется для регулировки скорости вым сигналом. Диапазон: 0~5В ,0~10В ил 0~20mA, входящий резистор 500Оhm, за: входного аналогового сигнал 4~20mA не вать параметр F406=2.00. Настройка на в производится переключателями см. Табл заводские настройки Al1 0~10V, и Al2 0	и -10B~10B; ток земление: GND. Для обходимо использо- ходной сигнал лицы 5-2, 5-3,

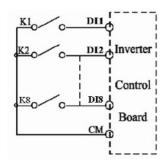
Кон-	Тип	Описание	Функция	
GND		Заземление внутреннего источника питания	Клемма заземления внешнего сигнала уг реннего источника питания 10V.	правления, а так же внут-
24V	Пита- ние	Управление питанием	Питание: 24±1.5V, заземление СМ; ток не него использования.	е более 200mA для внеш-
DI1		Толчковый терминал	При подаче сигнала на данный контакт, инвертор будет работать в толчковом режиме. Толчковый режим активен и в режиме работы и в режиме ожидания. Этот терминал так же может быть использован как высокоскоростной импульсный вход Максимальная частота 100КНz.	
DI2		Внешняя аварийная остановка	При подаче сигнала на данный контакт высветится сообщение об ошибке"ESP".	
DI3	Циф-	"FWD" (впер ед)	При подаче сигнала на данный контакт, инвертор будет работать вперед.	Значения данных кон-
DI4	ровой вход	"REV" (назад)	При подаче сигнала на данный контакт, инвертор будет работать в обратную сторону.	тактов задаются про- граммируемыми пара- метрами
DI5		Сброс	Подайте сигнал на данный контакт в режиме ошибки для перезагрузки инвертера.	
DI6		Свободная остановка	Электродвигатель после получения инвертором команды стоп остановить- ся под действием инерции	
DI7		Пуск	Запуск инвертора, действует аналогич- но клавише «Run» панели управления	
DI8		Стоп	Остановка инвертора, действует анало- гично клавише «Stop» панели управле- ния	
СМ	Об- щий кон- такт	Заземление управляюще- го питания	Заземление для источника питания 24В и	1 Др.
GND		Общий	Заземление дифферинциального сигнала	a
5V		Питание +5В	Питание дифферинциального сигнала	
A+	RS 485	Положительный контакт управляющего сигнала	Стандарт: TIA/EIA-485(RS-485) Протокол передачи данных: Modbus	
B-		Отрицательный контакт управ- ляющего сигнала	Скорость передачи: 1200/2400/4800/960	0/19200/38400/57600bps

Примечание:

Инверторы до 22kW включительно с функцией F1 не имеют клеммы DO2, DI7 и DI8.

Терминал AI1 инверторов до 22kW включительно могут только принимать сигнал 0~10V.


Схема цифрового входа:


Длина провода, используемого для монтажа цифрового входа, должна быть настолько мала, насколько возможно. Примите меры по фильтрации для предотвращения воздействия помех во время работы.

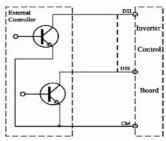
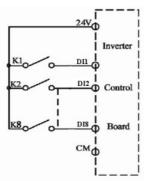

Цифровые входы подключаются по «NPN» или «PNP» схеме. Если применяется схема NPN, то переключатель необходимо перевести в положение "NPN".

Схема подключения терминала:

1. Схема подключения с положительным 2. Схема управления с активным положительным электродом (NPN режим).



Если цифровой вход управляется открытым электродом, переведите микровыключатель панели в соответствующее положение (PNP).

Схема подключения положительным 4. Схема управления активным электродом (PNP). отрицательным электродом.

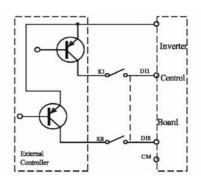


Схема с управлением положительным электродом наиболее часто используемая в настоящее время. Пользователь должен самостоятельно выбрать схему подключения управляющего терминала в соответствии с потребностями.

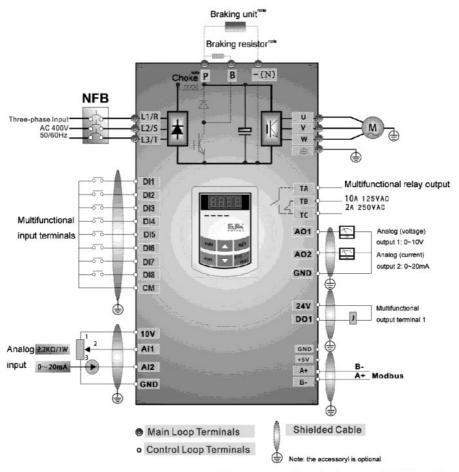
Инструкция по выбору режимов NPN и PNP:

- 1. Рядом с терминалом управления находится переключатель J7. См. Рис. 4-2.
- 2. Если переключатель находится в положении "NPN", терминал DI соединен с CM.

Если переключатель находится в положении "PNP", терминал DI соединен с 24V.

4.5 Рекомендуемые сечения кабелей питания.

Модель	Сечение провода(mm²)	Модель	Сечение провода(mm²)
E2000-0004S2	1.5	E2000-0370T3	25
E2000-0007S2	2.5	E2000-0450T3	35
E2000-0015S2	2.5	E2000-0550T3	35
E2000-0022S2	4.0	E2000-0750T3	50
E2000-0007T3	1.5	E2000-0900T3	70
E2000-0015T3	2.5	E2000-1100T3	70
E2000-0022T3	2.5	E2000-1320T3	95
E2000-0030T3	2.5	E2000-1600T3	120
E2000-0040T3	2.5	E2000-1800T3	120
E2000-0055T3	4.0	E2000-2000T3	150
E2000-0075T3	4.0	E2000-2200T3	185
E2000-0110T3	6.0	E2000-2500T3	240
E2000-0150T3	10	E2000-2800T3	240
E2000-0185T3	16	E2000-3150T3	300
E2000-0220T3	16	E2000-3550T3	300
E2000-0300T3	25	E2000-4000T3	400


4.6 Сечение кабелей защитного контура (заземление)

Сечение S для U,V,W (mm²)	Минимальное значение заземления (mm²)
S≤16	S
16 <s≤35< td=""><td>16</td></s≤35<>	16
35 <s< td=""><td>S/2</td></s<>	S/2

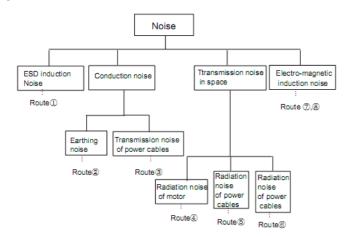
4.7 Стандартная схема подключения

Ниже схема подключения всех терминалов инвертора. НЕ следует подключать те терминалы, которые
 не задействованы.

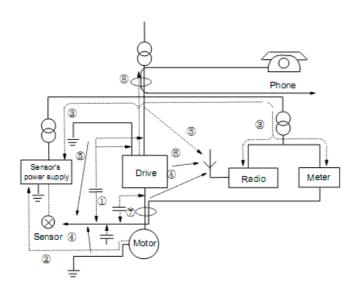
Basic Wiring Diagram for multi-stage speed control macro (NPN type)

Примечание:

- 1. При однофазном питании подключаются только клеммыL1/R и L2/S.
- Разъем RS485 встроен в MODBUS, и находится на левой стороне инвертора Последовательность контактов сверху вниз B-, A+, 5V power, и GND.

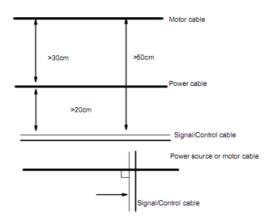

- Инверторы более 22kW имеют 8 многофункциональных терминалов DI1~DI8, инверторы до 22kW включительно имеют 6 многофункциональных терминалов DI1~DI6.
- 4. Встроенное реле 10A/125VAC. NO/NC: 3A 250VAC/30VDC.

4.8 Основные методы подавления шума


Шумы, созданные инвертором могут оказывать отрицательное воздействие на работу оборудование по близости. Степень отрицательного воздействия зависит от системы привода, защищенности оборудования, проводки, качества монтажа и способа заземления.

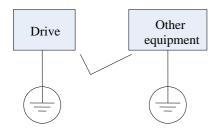
4.8.1 Способы распространения и методы подавления

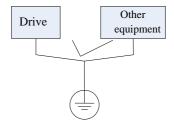
(1) Виды шумов


2 Способы распространения

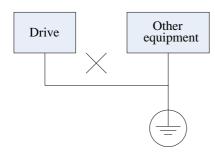
Пути	Способ уменьшения шума
, распространения	
2	Если внешнее оборудование в одной цепи с инвертором, оборудование может непроизвольно выключатся из-за утечки тока через заземление. Проблема может быть решена если оборудование не будет заземлено.
3	Если внешнее оборудование и инвертор подключены к одному источнику питания, шумы могут передаваться по питающим проводам, что может привести к самопроизвольному отключению оборудования. Выполните следующие действия, чтобы решить эту проблему: Установите фильтр шума на входе привода, и используйте изолирующий трансформатор или линейный фильтр что бы защитить инвертор от шумов вызванные внешним оборудованием.
456	Если провода передачи данных от измерительных приборов, радиоаппаратура и датчики установлены в одном шкафу с инвертором, то провода и оборудование будут фонить. Выполните следующие действия, чтобы решить эту проблему: (1) Оборудование и провода передачи данных должны находится как можно дальше от инвертора. Провода передачи данных должны быть экранированы и экранирующий слой должен быть заземлен. Провода передачи данных должны проходить внутри металлической трубы, и должны располагаться как можно дальше от входящих/выходящих проводов инвертора. Если провода передачи данных пересекаются с проводами питания, то пересекаться они должны под прямым углом. (2) Установите фильтр радиопомех и дроссель на входе и выходе инвертора для подавления шумов. (3) Силовой кабель мотора должен прокладываться в трубе с толщиной стенок более 2 мм. или в бетонной штробе. Питающие кабели должны прокладываться внутри металлической трубы с заземлением экранирующего слоя.
178	Не прокладывайте провода передачи данных параллельно с силовыми кабелями и не связывайте эти кабели в один жгут, чтобы электромагнитные помехи не передавались на провода передачи данных. Другое оборудование так же должно находится как можно дальше от инвертора. Провода передачи данных должны проходить внутри металлической трубы, и должны располагаться как можно дальше от входящих/выходящих проводов инвертора. Провода передачи данных и силовые кабели должны быть экранированы. Электромагнитных помех будет меньше если они будут проложены внутри металлических труб, и расстояние между трубами будет не менее 20 см.

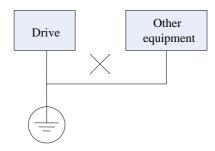
4.8.2 Прокладка кабелей


Кабели передачи данных, силовые входящие кабели и кабели питания мотора прокладываются отдельно друг от друга, и на достаточном удалении друг от друга, особенно когда кабели проходят параллельно и их длина большая. Если провода передачи данных пересекаются с проводами питания, то пересекаться они должны под прямым углом. передачи данных должны быть экранированы, и экранирующий слой должен быть подключен к инвертору кабельными зажимами.



4.8.3 Заземление


Независимое заземление (рекомендуется)



Общий кабель заземления (не рекомендуется)

Примечание:

 Чтобы уменьшить сопротивление заземления, необходимо использовать кабель с плоским сечением, т. к. высокочастотный импеданс плоского кабеля меньше, чем у кабеля с круглым сечением с такими же характеристиками.

- 2. Если разное оборудование одной системы имеет общее заземление, то ток утечки будет производить помехи на всю систему. Таким образом инвертор должен быть заземлен отдельно от другого оборудования, такого как аудио оборудование, датчиков, компьютеры и пр.
- 3. Кабели заземления должны находится как можно дальше от входящих/выходящих проводов оборудования чувствительного к шумам, а также должны быть как можно короче.

4.8.4 Ток утечки

Ток утечки может течь через входной и выходной конденсаторы инвертора и конденсатор мотора. Величина тока утечки зависит от распределенной емкости и несущей частоты. Ток утечки состоит из тока утечки заземления и тока утечки между линиями.

Ток утечки заземления

Ток утечки заземления может течь не только через систему привода, но также по кабелям заземления другого оборудования. Это может привести к ложному срабатыванию автоматических выключателей и реле. Увеличение несущей частоты и длины провода мотора приводит к увеличению тока утечки.

Способы предотвращения:

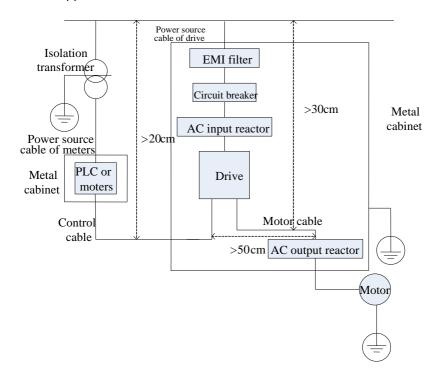
Уменьшение несущей частоты, но это может привести к увеличению шума мотора;

Провода мотора должны быть как можно короче;

Инвертор и другое оборудование должны иметь автоматические выключатели для защиты от скачков напряжения.

Ток утечки между линиями

Ток утечки между линиями возникает на встроенных конденсаторах инвертора и может вызвать ложное срабатывание теплового реле, особенно в инверторах мощностью менее 7.5kW. Когда кабель мотора превышает 50м, отношение тока утечки к номинальному току мотора может возрасти, что приведет к ложному срабатыванию теплового реле.


Способы предотвращения:

Уменьшение несущей частоты, но это может привести к увеличению шума мотора;

Установка дросселя на выходе инвертора;

Для надежной защиты двигателя рекомендуется использовать датчик температуры для определения температуры двигателя, а также использовать устройство защиты от перегрузки инвертора (электронное тепловое реле) вместо внешнего теплового реле.

4.8.5 Подключение питания

Примечание:

- Питающие кабели мотора должны быть заземлены со стороны инвертора, по возможности мотор и инвертор должны заземляться отдельно.
- Силовые кабели и провода передачи данных должны быть экранированы. Экранирующий слой должен быть заземлен, что бы улучшить защиту от помех.
- Обеспечьте хорошую проводимость между монтажной платой, винтами и металлическим корпусом инвертора; Используйте зубчатые гроверные шайбы и монтажную панель.

4.8.6 Применение сетевого фильтра.

С оборудованием, которое может создавать сильные электромагнитные импульсы или чувствительно к таким импульсам необходимо использовать фильтр, который должен иметь двухстороннею направленность и пропускать ток только с частотой 50Hz и обрезать высокую частоту.

Функции сетевого фильтра.

Сетевой фильтр позволяет обеспечить питание оборудования в соответствии с требованиями стандарта ЕМС. Он также может подавлять помехи от оборудования.

Основные ошибки при использовании фильтра.

1. Слишком длинный питающий кабель.

Фильтр внутри шкафа должен располагаться рядом с входом источника питания. Длина питающих кабелей должна быть как можно короче.

2. Входящие и выходящие силовые кабели располагаются слишком близко.

Рассторяние между входящими и выходящими силовыми кабелями должно быть как можно больше, в противном случае шумы могут распространиться по кабелям в обход фильтра. Таким образом фильтр будет бесполезен.

3. Плохое заземление фильтра.

Корпус фильтра должен быть заземлен через металлический корпус инвертора. Используйте специальный терминал заземления на корпусе фильтра. Если использовать кабель соединяющий корпуса фильтра и инвертора для заземления, то заземление будет бесполезным при высокой частоте. Если частота высокая, то из-за сопротивления кабеля возникает небольшой эффект байпаса. Фильтр должен монтироваться на корпусе оборудования. Убедитесь что отсутствует краска на корпусах в местах контакта между инвертором и фильтром.

V. Управление и простой запуск.

В этой главе даны определения и описание терминов относительно управления, пуска и состояния инвертора. Прочитайте внимательно, это поможет правильно использовать оборудование.

5.1 Основные режимы.

5.1.1 Режимы контроля.

Инверторы серии E2000 имеют пять режимов контроля: векторное управление без датчика (F106=0), векторное управление с закрытым контуром (F106=1), V/F управление (F106=2) и векторное управление (F106=3), PMSM векторное управление (F106=6).

5.1.2 Компенсация крутящего момента

В режиме V/F контроля, инверторы серии E2000 имеют 4 вида компенсации крутящего момента: линейная (F137=0); квадратичная (F137=1); пользовательская многоточечная (F137=2); автоматическая (F137=3)

5.1.3 Режим установки частоты

Параметры F203~F207 предназначены для выбора способа установки частоты.

5.1.4 Режим управления командами Пуск/Стоп

Команды Пуск, Стоп и др. могут поступать по трем каналам: 1. Клавиатура (Панель управления); 2. Терминалы управления; 3. MODBUS.

Режим управления командами выбирается в параметрах F200 и F201.

5.1.5 Состояние инвертора

После подключения к сети, инвертор может находится в одном из четырёх состояний: режим ожидания, режим программирования, режим работы и аварийный режим.

Режим ожидания

После подключения ("Автозапуск" не активен) или остановки инвертор будет находится в режиме ожидания пока не получит команду управления. В данном режиме индикатор режима работы выключен, и дисплей показывает состояние до отключения питания.

Режим программирования

Через панель управления инвертор может быть переведен в режим, при котором возможно считывание или изменение значений параметров. Такой режим называется режимом программирования. Изменяя значения параметров пользователь может выбрать разные режимы работы.

Рабочий режим

Инвертор в режиме ожидания или в аварийном режиме переходит в рабочий режим после получения команды управления.

Индикатор рабочего режима загорается при нормальном переходе инвертора в этот режим.

Аварийный режим

Режим, при котором инвертор находится в состоянии ошибки, и отображается код ошибки. Коды ошибок: ОС, ОЕ, OL1, OL2, OH, LU, PF1 и PF0 означают "высокий ток", "высокое напряжение", "перегрузка инвертора", "перегрузка двигателя", "перегрев", "низкое напряжение", " отсутствие фазы на входе", "отсутствие фазы на входе" соответственно.

Для решения проблем см. Приложение І "Решение проблем" к данному руководству.

5.2 Панель управления и способы управления.

Панель управления - это стандартный модуль в конструкции инвертора серии E2000. Через панель управления пользователь может осуществлять настройку параметров, мониторинг состояния и управление работой инвертора. Панель управления имеет 3 секции: дисплей, секция индикаторов состояния и клавиатура (опционально - встроенный потенциометр). Более подробно см. главу II "Панель управления" данного руководства.

Необходимо знать функции и значение кнопок панели управления. Пожалуйста, внимательно прочтите это руководство перед началом работы.

5.2.1 Использование панели управления

(1) Процедура установки значений параметров через панель управления

Для настройки параметров через панель управления применяется трех-уровневое меню, которое позволяет удобно и быстро осуществлять поиск и изменение параметров.

Трех-уровневое меню: Группа параметров (первый уровень) \rightarrow Код параметра (второй уровень) \rightarrow Установка значения параметра (третий уровень).

(2) Установка параметров

Правильная настройка параметров позволяет максимально эфективно использовать инвертор. Ниже описано как установить параметры через панель управления.

Порядок действий:

- (1) Нажмите клавишу "Fun" для входа в меню.
- ② Нажмите клавишу "Stop/Reset", потухнет индикатор DGT. Нажмите В и В, что позволит изменять группы параметров. Первая цифра после F на дисплее будет 1, другими словами будет отображаться F1××.
- ③ Нажмите снова клавишу "Stop/Reset", индикатор DGT загорится, что позволит перемещаться внутри группы параметров . Нажимайте ▲ и №чтобы установить код F113; нажмите клавишу "Set" для отображения значения данного параметра /50.00/; нажимая ▲ и ▼ установите требуемую частоту.
- (4) Нажмите "Set" для завершения установки (записи в память нового значения).

5.2.2 Переключение и отображение параметров состояния инвертора

Дисплей на панели инвертора как в режиме работы, так и в режиме ожидания отображает значения выбранных параметров. Параметры можно выбрать и установить через коды F131 и F132. Клавишей "Fun" можно переключать многократно и отображать параметры в режиме ожидания или рабочем режиме. Ниже описание способов отображения параметров в режиме ожидания и рабочем режиме.

(1) Переключение отображаемых параметров в режиме ожидания.

В режиме ожидания инвертор может отображать несколько параметров, индикация значения которых переключается с помощью клавиш "Fun" и "Stop/Reset". Это параметры: активация толчкового режима с клавиатуры, заданная скорость вращения, PN напряжение, значение обратной связи PID, температура, заданное значение PID и значение счетчика. См. описание функции F132.

(2) Переключение отображаемых параметров в режиме работы.

В режиме работы инвертор может отображать несколько параметров, индикация значения которых переключается с помощью клавиш "Fun" и "Stop/Reset". Это параметры: текущая скорость вращения, ток на выходе, напряжение на выходе, PN напряжение, значение обратной связи PID, температура, и значение счетчика, линейная скорость и заданное значение PID. См. описание функции F131.

5.2.3 Измерение параметров двигателя

Для выбора режима векторного управления и автоматической компенсации крутящего момента (F137=3) в режиме V/F необходимо ввести параметры двигателя точно так, как указано на шильдике.

Инвертор подберет стандартное значение сопротивления статора мотора в соответствии с параметрами указанными на шильдике мотора. Для достижения лучшей производительности на инверторе можно запустить измерение сопротивления статора мотора, чтобы определить точное значение сопротивления. Параметры мотора настраиваются через функцию F800.

Например: если на шильдике мотора параметры следующие: количество полюсов 4; мощность 7.5kW; напряжение 400V; ток 15.4A; частота 50.00HZ; скорость вращения 1440/min, то измерение параметров двигателя производится следующим образом:

Установите параметры мотора следующим образом: F801 = 7.5, F802 = 400, F803 = 15.4, F805 = 1440 и F804 = 4

- 2. Для динамического измерения параметров мотора, задайте F800=1. Убедитесь, что мотор отключен от нагрузки. Нажмите клавишу "Run" и на дисплее загорится "TEST", и начнется двухуровневая настройка параметров мотора. Мотор раскрутится во соответствии с установленным временем разгона F114. Скорость мотора будет уменьшена до 0 в соответствии с установленным временем торможения F115. После завершения автоматической проверки параметры мотора будут сохранены в F806~F809, а значение F800 будет автоматически установлено на 0. В режиме векторного управления с обратной связью установить значение F851 соответствующее энкодеру, единица измерения имп./об.
- 3. Если невозможно отключить нагрузку от мотора, выберите F800= 2,т.е. статическую настройку. Нажмите клавишу "Run", на дисплее загорится "TEST", и начнется двухуровневая настройка параметров мотора. Сопротивление статора, сопротивление ротора и индуктивность обмоток будут сохранены в F806-F808 автоматически, а значение F800 будет автоматически установлено на 0. Можно вычислить индуктивность и ввести значение вручную.

5.2.4 Быстрый ввод в эксплуатацию.

Таблица 5-1 Краткое введение по работе с инвертором

Действие	Описание	Справка
Монтаж и окружающая среда	Устанавливайте инвертор в местах отвечающих техническим требованиям и спецификациям продукта. Обратите внимание на условия окружающей среды (температура, влажность и т.д.) и теплового излучения преобразователя, чтобы проверить, удовлетворяют ли они требованиям.	см. гл. I, II, III, IV.
Провода	Кабели силовой цепи, заземления, провода управления и пр	см. гл. IV.
Проверка перед подачей питания	Убедитесь, что напряжение питания правильное; на входе установлен автомат; инвертор заземлен правильно и надежно; питающие кабели подключены правильно к инвертору (терминалы R/L1, S/L2 для однофазного питания, и терминалы R/L1, S/L2, T/L3 для трехфазного питания); выходные терминалы U, V, и W соединены с двигателем правильно; управляющие терминалы подключены правильно; все внешние выключатели установлены правильно; мотор без нагрузки (мотор отключен от нагрузки механически.).	см. гл. I∼IV
Немедленная проверка после подачи питания	Проверьте есть ли ненормальный звук, задымление или запах от инвертора. Убедитесь, что на дисплее панели управления отсутствует сообщение об ошибке. В случае каких-либо отклонений, выключите питание немедленно.	см. Приложение 1 и Приложение 2.
Установка рабочих параметров	Установите параметры инвертора и двигателя правильно, как правило это частота, верхний и нижний лимит частоты, время разгона/торможения, направление движения и пр. Возможно выбрать определенный режим работы в соответствии с задачей.	см. описание групп параметров

Действие	Описание	Справка
Корректный ввод данных с шильдика мотора, и измерение параметров мотора.	Убедитесь, что данные с шильдика мотора введены правильно. Это необходимо сделать очень внимательно, иначе возможно возникновение серьезных проблем во время работы. Перед первым запуском в режиме векторного управления, произведите настройку параметров двигателя, чтобы получить точные электрические параметры двигателя. Пред настройкой параметров убедитесь, что двигатель механически отключен от нагрузки. Запрещается измерять параметры двигателя когда двигатель находится в рабочем состоянии.	см. описание для группы кодов F800~F830
Проверка без нагрузки	Включите инвертор с двигателем без нагрузки через панель управления или терминал управления. Проверьте и убедитесь что система запустилась Проверьте состояние мотора: стабильное и нормальное вращение, направление вращения, режим разгона и торможения, отсутствие вибрации, отсутствие не постороннего звука и запаха. Проверьте состояние инвертора: отображение данных на дисплее, работу вентилятора, последовательность работы реле, отсутствие вибрации и постороннего звука. В случае обнаружения ненормальной работы немедленно остановите и проверьте инвертор.	см. гл. V.
Проверка под нагрузкой	После успешной проверки без нагрузки подключите нагрузку. Включите инвертор через панель управления или терминал управления и увеличивайте постепенно нагрузку. Оставьте инвертор работать на некоторое время когда нагрузка достигнет 50%, а затем 100%, чтобы проверить работу системы. Проверить общий осмотр инвертора во время работы, чтобы проверить есть ли отклонения в работе. В случае отклонений в работе немедленно остановить и проверить инвертор.	
Проверка во время работы	Проверить стабильность работы двигателя, направление вращения, наличие вибрации постороннего шума от двигателя, стабильность разгона/торможения, установленный режим работы и отображение параметров на дисплее, работу вентилятора, наличие вибрации и постороннего звука инвертора. В случае отклонений остановите немедленно инвертор, и проверьте после отключения питания.	

5.3 Примеры использования инвертора

Ниже показаны различные основные способы применения инвертора. Для примера взят инвертор 7.5kW который управляет трехфазным асинхронным двигателем 7.5kW .

Параметры на шильдике мотора: 4-х полюсный; мощность 7.5kW; напряжение 400V; ток 15.4A; частота 50.00HZ; скорость вращения 1440rpm.

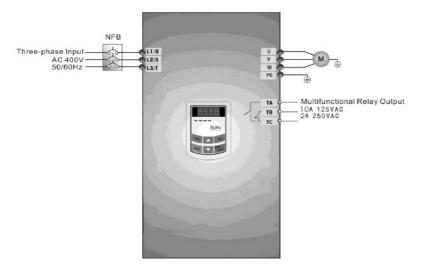


Рис. 5-1 Схема подключения 1

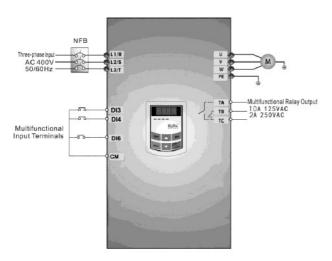
5.3.1 Старт, Стоп, установка частоты и направления вращения через панель управления

- (1) Подключите провода в соответствии с рис. 5-1. После проверки проводки включите инвертор.
- (2) Нажмите клавишу "Fun" для входа в меню программирования.
- (3) Измерьте параметры мотора

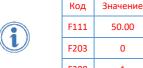
Значение
1(2)
7.5
400
15.4
1440

Нажмите клавишу "Run" для измерения параметров мотора. После завершения авто настройки соответствующие значения параметров будут сохранены в $F806 \sim F809$. Более подробно об авто настройке параметров мотора см. раздел "Измерение параметров двигателя" и гл. XII (Примечание: F800=1 динамическая настройка, F800=2 статическая настройка. В режиме динамической настройки убедитесь, что двигатель отключен от нагрузки.

(4) Установите параметры инвертора:



Код	Значение	
F111	50.00	
F200	0	
F201	0	
F202	0	
F203	0(5)	


- (6) Во время работы частоту можно менять с помощью клавиш ▲ и ▼;
- (7) Нажмите однократно клавишу "Stop/Reset", скорость мотора будет уменьшена до полной остановки;
- (8) Выключите питание.

5.3.2 Установка частоты через панель управления, и старт, стоп, и изменение направления вращения через терминал управления

(1) Подключите провода в соответствии с рис. 5-2. После проверки проводки включите инвертор.

- (2) Нажмите клавишу "Fun" для входа в меню программирования.
- (3) Измерьте параметры мотора: порядок действий точно такой же как в предыдущем примеpe.
- (4) Установите параметры инвертора:

- (5) Замкните выключатель DI3, инвертор запустит вращение вперед;
- (6) Во время работы частоту можно менять с помощью клавиш ▲ и ▼;
- (7) Во время работы разомкните выключатель DI3, затем замкните DI4, направление вращения мотора изменится (Примечание: Необходимо установить временной интервал между вращением вперед и назад F120 в зависимости от нагрузки. Если интервал слишком короткий, то сработает защита, код ошибки ОС)
- (8) Разомкните выключатели DI3 и DI4, скорость мотора снизится до полной остановки;
- (9) Выключите питание.

5.3.3 Толчковый режим

- (1) Подключите провода в соответствии с рис. 5-1. После проверки проводки включите инвертор.
- (2) Нажмите клавишу "Fun" для входа в меню программирования.
- (3) Измерьте параметры мотора: порядок действий точно такой же как в примере 1.
- (4) Установите параметры инвертора:

Код	Значение
F124	5.00
F125	30
F126	30
F132	1
F202	0

- (5) Нажмите и удерживайте клавишу "Run" пока мотор разгонится и достигнет толчковой частоты, и установится толчковый режим.
- (6) Отпустите клавишу "Run". Мотор остановится;
- (7) Выключите питание.

5.3.4 Установка частоты через аналоговый терминал, и управление через терминалы управления.

(1) Подключите провода в соответствии с рис. 5-3. После проверки проводки включите инвертор. Примечание: для установки внешних аналоговых сигналов может использоваться потенциометр

2K~5K. Если требуется более высокая точность, используйте точный многооборотный потенциометр и экранированный провод с заземлением экранирующего слоя.

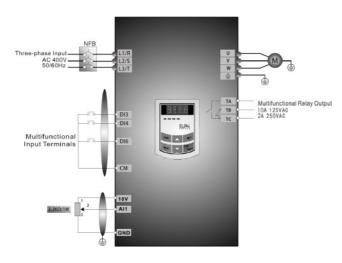
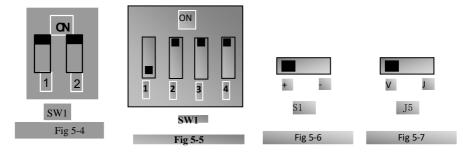


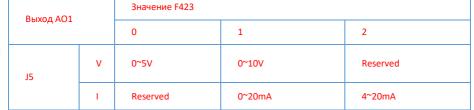
Рис. 5-3 Схема подключения 3

- (2) Нажмите клавишу "Fun" для входа в меню программирования.
- (3) Измерьте параметры мотора: порядок действий точно такой же как в примере 1.

Код	Значение
F203	1
F208	1

- (4) Установите параметры инвертора:
- (5) Рядом с блоком терминала управления на инверторах до 22 kW включительно есть красный 2 -х позиционный переключатель SW1, см. рис. 5-4. Назначение этого переключателя выбор диапазона напряжения сигнала (0~5V/0~10V) или управляющего тока на аналоговом входящем терминале Al2, по умолчанию выбран ток. Выберите аналоговый входной сигнал через F203. Для выбора диапазона сигнала 0~20mA переведите переключатель 1 в положение ON и переключатель 2 в положение ON как показано на рисунке. Как установить другие возможные диапазоны входного аналогового сигнала, показано в таблице 5-2.
- (6) Рядом с блоком терминала управления на инверторах более 30 kW есть красный 4-х контактный переключатель SW1, см. рис 5-5. Назначение этого переключателя это выбор входного диапазона (0 5 V/0 1 0V/0 2 20mA) на терминалах Al1 и Al2. Выберите аналоговый входной сигнал через F203 . По умолчанию для Al1 установлено 0 1 10V, для Al2 установлено 0 2 20mA. Как установить другие возможные диапазоны входного аналогового сигнала, показано в таблице 5-3.
- (7) Рядом с блоком терминала управления есть переключатель S1, см. рис. 5-6. Назначение этого переключателя - выбор диапазона напряжения на терминале AI1. В положении "+" выбран диапазон 0~10V, в положении "-", выбран диапазон -10~10V.
- (8) Замкните переключатель DI3, мотор начнет вращаться вперед;
- (9) Потенциометр может быть установлен во время работы;
- (10) Во время работы разомкните переключатель DI3, затем замкните DI4, направление вращения мотора изменится;
- (11) Разомкните переключатели DI3 и DI4, скорость мотора снизится до полной остановки;
- (12) Выключите питание.
- (13) Аналоговый выходной терминал AO2 может выводить только управляющий ток, терминал AO1 может выводить напряжение и ток, выбирается переключателем J5, см. рис.5-7, положение выключателей на рис.5-4.




Таблица 5-2 Положение переключателей диапазона входного аналогового сигнала

F203=2, выбран канал AI2	F203=2, выбран канал AI2			ібран канал AI1		
Переключатель SW1	Переключатель SW1		Переключатель SW1		Переключате	
Переключатель 1	Переключатель 2	Диапазон сигнала	+	-		
OFF	OFF	0~5V	0~10V	-10~10V		
OFF	ON	0~10V				
ON	ON	0~20mA				

Таблица 5-3 Положение переключателей диапазона входного аналогового сигнала

F203 = 1, выбран канал AI1				F203= 2, выбран канал AI2		
Переключатель SW1	L	Переключ атель S1	Диапазон сигнала	Переключатє	ель SW1	
Переключатель 1	Переключатель 3			Переключа тель 2	Переключ атель 4	Диапазон сигнала
OFF	OFF	+	0~5V	OFF	OFF	0~5V
OFF	ON	+	0~10V	OFF	ON	0~10V
ON	ON	+	0~20mA	ON	ON	0~20mA
OFF	OFF	-	Не задейство вано			
OFF	ON	-	-10~10V			
ON	ON	-	Не задейство вано			

Таблица 5-4 Взаимосвязь между AO1, J5 и F423

VI. Программируемые параметры

6.1 Основные параметры

00 Пароль пользователя	Диапазон значений: 0~9999	Заводское значение: 0
------------------------	---------------------------	-----------------------

Если F107=1, то необходимо ввести пароль после включения питания или сброса ошибки для
изменения параметров. В противном случае изменение параметров будет невозможно, и на
дисплее будет сообщение "Err1".

Значения параметров: F107 - пароль активен или нет; F108 - пароль

١	F102	Номинальный ток (А)	Заводское значение: зависит от модели
,	F103	Номинальная мощность (kW)	Заводское значение: зависит от модели

Номинальный ток и мощность мокут быть только отображены, и не могуть быть изменены.

	F105 версия прошивки No.	Диапазон: 1.00~10.00	Заводское значение: зависит от модели
--	--------------------------	----------------------	---------------------------------------

• Номер версии прошивки может быть только отображен, и не может быть изменен.

Лоступные значения:

F106 Режим управления	0: Без сенсорное векторное управление (SVC); 1: Векторное управление с обратной связью (VC); 2: V/F;	Заводское значение: 2
	3: Векторное управление 1;6: PMSM без сенсорное векторное управление	

- 0: Без сенсорное векторное управление используется для высокопроизводительных применений. Один инвертор может управлять одним двигателем..
- 1: Векторное управление с обратной связью подходит для управления скоростью и крутящим моментом с высокой точностью. Один инвертор может управлять только одним мотором, и на моторе должен быть установлен энкодер. Параметры F851 и F854 должны быть заданы правильно.
- 2: V/F управление подходит для управления с обычной точностью или управления одним инвертором нескольких двигателей.
- 3: Векторное управление 1 с автоматической компенсацией крутящего момента (F137=3). При автонастройке параметров двигателя, отключение двигателя от нагрузки не требуется. Один инвертор может управлять только одним двигателем.
- 6: PMSM без сенсорное векторное управление для высокопроизводительных применений. Один инвертор может управлять одним двигателем.

Eura Drives 45 E2000

Примечание:

1. Необходимо задать параметры двигателя перед запуском в режиме векторного управления (F106=0, 1, 3 или 6).

- 2. В режиме векторного управления (F106=0, 1, 3 или 6) один инвертор может управлять только одним двигателем, и мощность двигателя должна соответствовать мощности инвертора. В противном случае система не сможет работать должным образом.
- 3. В режиме векторного управления (F106=0 или 1), максимальное значение частоты (F111) должно быть ниже 500.00Hz.
- 4. Возможен ручной ввод параметров двигателя, используя параметры производителя.
- 5. Обычно двигатель работает нормально с параметрами по умолчанию, но наилучшая производительность не будет достигнута. Таким образом, для того, чтобы получить лучшую производительность необходимо задать параметры двигателя перед запуском в режиме векторного

	F107 Пароль	Значение: 0: выкл; 1: вкл.	Заводское значение: 0	
1	F108 Установка пароля	3начение: 0~9999	Заводское значение: 8	

- Если F107=0, изменение параметров возможно без ввода пароля. Если F107=1, изменение параметров возможно только после ввода пароля через F100.
- Возможно изменить пользовательский пароль. Пароль меняется также как и другие параметры.
- Введите значение F108 в F100, и защита паролем будет снята.

Примечание: Если защита паролем включена, и пароль не введен, F108 будет отображать 0.

F109 Стартовая частота (Hz)	Диапазон значений: 0.00~10.00	Заводское значение: 0.00
F110 Время удержания стартовой частоты (S)	Диапазон значений: 0.0~999.9	Заводское значение: 0

- Инвертор запускается со стартовой частотой. Если заданная частота ниже стартовой, то F109 не активна.
- Инвертор запускается со стартовой частотой. После удержания стартовой частоты в течение времени заданного в F110, частота будет увеличена до заданной. Время удержания не включает в себя время разгона/торможения.
- Стартовая частота не ограничена минимальной частотой установленной F112. Если стартовая частота установленная F109 меньше минимальной частоты установленной F112, инвертер запустится в соответствии с параметрами установленными F109 и F110. После запуска и установления нормальной работы частота будет ограничена установленными значениями F111 и F112.
- Стартовая частота должна быть ниже максимальной частоты установленной F111.

Примечание: если активирован датчик скорости, то F109 и F110 не активны.

F111 Макс. частота (Hz)	Диапазон значений: F113~650.0	Заводское значение: 50.00
F112 Мин. частота (Hz)	Диапазон значений: 0.00~F113	Заводское значение: 0.50

Максимальная частота задается F111.

Примечание: в режиме векторного управления (F106=0 или 1) максимальная частота должна быть менее 500Hz.

- Минимальная частота задается F112.
- Установленное значение минимальной частоты должно быть меньше чем значение заданной частоты F113.
- Инвертор начинает разгон со стартовой частоты. Если во время разгона заданная частота будет менее минимальной частоты, то инвертор остановится.

Макс/мин частота должна устанавливаться в соответствии с параметрами указанными на шильдике мотора и условиями работы. Запрещается работа с низкой частотой длительное время, т.к. мотор может выйти из строя из-за перегрева.

F113 Заданная частота (Hz)	Диапазон значений: F112~F111	Заводское значение: 50.00
----------------------------	------------------------------	---------------------------

 Показывает предустановленную частоту. В режиме ручнного управления скоростью или управления скоростью через терминал, инвертор после запуска выйдет на эту частоту автоматически.

F119 используется в качестве ссылки к установке времени разгона/торможения.

Время разгона/торможения может быть изменено через многофункциональный терминал подключением DI с CM (параметры F316∼F323). См. инструкцию для входных терминалов.

Примечание: если активен датчик скорости , то время разгона/торможения, минимальная частота и заданная частота не активны.

После отключения датчика скорости инвертор выйдет на заданную частоту в соответствии с установленным временем разгона/торможения.

F118 Рабочая частота (Hz)

Диапазон значений: 15.00~650.0

Заводское значение: 50.00Hz

Это частота V/F кривой, а так же наименьшая частота при наивысшем выходящем напряжении.

•Если текущая частота ниже данного значения, инвертор поддерживает постоянный крутящий момент. Если частота выше данного значения инвертор поддерживает постоянную мощность на выходе.

Примечание: если подхват на лету активен, подстройка частоты не активна. После отключения подхвата на лету, подстройка частоты активна.

F119 Условие разгона/ торможения

Диапазон значений: 0: 0~50.00Hz

1: 0~макс. частота

Заводское значение: 0

Если F119=0, время разгона/торможения инвертора от 0Hz (50Hz) до 50Hz (0Hz).

Если F119=1, время разгона/торможения инвертора от OHz (макс. частота) до макс. частоты (OHz).

F120 время задержки при переключении Вперед/ Назад (сек)

Диапазон значений:

0: не активно; 1: активно

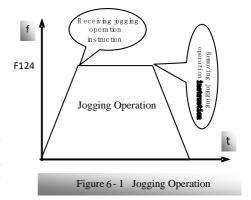
Заводское значение: 0

- Время задержки отменяется при получении сигнала "стоп". Эта функция подходит для всех режимов управления скоростью кроме автоматического.
- Эта функция уменьшает удар при переключении направления.

Примечание: если подхват на лету активен, F120 не активна. После отключения подхвата на лету, F120 активна.

F122 запрет реверса

Диапазон значений:


0: не активно; 1: активно

Заводское значение: 0

Если F122=1, инвертор будет работать только в одном направлеии независимо от состояния терминалов и значения параметра F202. Инвертор не будет работать в обратном направлении и переключение вперед/назад запрещено. Если поступает команда реверс, то инвертор остановится.

Если активен запрет реверса (F202 =1), то независимо от того активен подхват на лету <u>или нет,</u> инвертор будет отключен.

Если F122=1, F613=1 и мотор в состоянии свободного выбега в обратном направлении, а иннвертор получает команду вперед, и если инвертор может определить направление скольжения и скорость вращения, то инвертор запустит реверс до 0.0Hz, затем запустит вперед в соответствии с установленными параметрами.

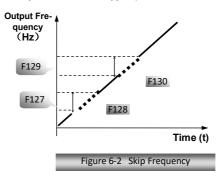
Fura Drives 48 F2000

F123 уменьшение частоты при комбинированном контроле скорости

Диапазон значений:

0: не активно: 1: активно

Заводское значение: 0


 \cdot При комбинированном контроле скорости: если F123=0, то уменьшение частоты происходит до 0 Γ ц; если F123=1, то уменьшении скорости проходит через 0 Γ ц и включает реверс.

	F124	Толчковая частота (Hz)	Диапазон значений: F112~F111	Заводское значение: 5.00
i	F124	Толчковая частота (Hz)	Диапазон значений:	D coorday results
	F124	Толчковая частота (Hz)	0.1~3000	В соответствии с моделью

- Существует два варианта запуска толчкового режима: через панель управления и с помощью терминала управления. Запуск толчкового режима через панель управления возможен только в режиме ожидания (необходимо сделать изменение заводской настройки параметра F132).
 Запуск с помощью терминала управления возможен как в режиме ожидания, так и в рабочем режиме.
- Запуск толчкового режима через панель управления (в режиме ожидания):
 - * Нажмите клавишу "Fun", на дисплее отобразится "HF-0";
 - * Нажмите клавишу "Run" и инвертор выведет электродвигатель на толчковую частоту (если снова нажать клавишу "Fun", то толчковый режим будет отключен).
- Запуск толчкового режима с помощью терминала управления возможен как во время движения, так и во время режима ожидания: заводская настройка позволяет активировать толчковый режим, замкнув контакты DI1 и CM (режим работы терминала управления контролируется параметрами F316-F323)

Примечание: когда толчковый режим активен, функция подхвата на лету неактивна.

F127/F129	Частота пропуска A,B (Hz)	Диапазон значений: 0.00~650.0	Заводское значение: 0.00
F128/F130	Ширина пропуска A,B (Hz)	Диапазон значений: 0.00~2.50	Заводское значение: 0.00

- Во время работы электродвигателя существует вероятность возникновения резонанса на определенной частоте. Использование данной функции позволит исключить резонанс.
- Инвертор автоматически пропустит заданную частоту.
- "Ширина пропуска" определяет нижний и верхний пределы от пропускаемой частоты. Например, Частота пропуска=20Hz, Ширина пропуска=0.5Hz, инвертор автоматически пропустит диапазон частоты $19.5\sim20.5$ Hz.
- Данная функция не работает во время разгона/торможения.

Примечание: если подхват на лету, то эта функция не активна. После отключения подхвата на лету, функция активна.

	0—текущая частота/параметр	
	1—скорость вращения	Заводское значение: 0+1+2+4+8=15
	2—ток на выходе	
	4— напряжение на выходе	
	8-PN	
	16—PID значение сигнала обратной связи	
F131 Показания дисплея в	32—Температура	
рабочем режиме	64—Значение счетчика	
	128—Линейная скорость	
	256—PID заданное значение	
	512—Длина пряжи	
	1024 — Центральная частота	
	2048 — Мощность на выходе	
	4096— Крутящий момент на выходе	

- При выборе одного значения из 1, 2, 4, 8, 16, 32, 64 и 128 будет отображаться только одно выбранное значение. Для отображение нескольких параметров необходимо сложить присвоенные им значения и полученную сумму ввести в параметр F131, т. е. Если необходимо отобразить скорость вращения, ток на выходе и значение сигнала обратной связи, задайте F131=19 (1+2+16). Все остальные параметры будут скрыты.
- Если F131 = 8191, все возможные значения будут отображены, а "текущая частота/ параметр" будут отображаться всегда, независимо от того выбран этот параметр или нет.
- Для вывода на экран выбранной функции необходимо нажать клавишу "Fun".
- Значение для каждого параметра см. в таблице:
- Независимо от того какое установлено значение F131, в режиме ожидания будет моргать заданная частота.

Заданная скорость вращения есть целое число. Если оно превышает 9999, добавьте дясятичную точку.

Ток отображается как А *.* Напряжение как U*** Счетчик **** Температура Н***

линейная скорость L***. Если значение превышает 999, добавьте десятичную точку. Если превышает 9999, добавьте две десятичные точки.

PID заданное значение о*.* PID значение сигнала обратной связи b*.* Длина пряжи * центральная частота *.** мощность на выходе *.* крутящий момент на выходе *.*

Примечание: если значение 9999, от отображается только 4 знака и добавляется десятичная точка, т. е. значение 12345 отображается как 1234.

Диапазон значений:

F123 Показания дисплея в режиме ожидания	0: Частота/параметр 1: Толчковый режим 2: Заданная скорость вращения 4: Напряжение на входе 8: PID значение сигнала обратной связи 16: Температура 32: Значение счетчика 64: PID заданное значение 128: Длина пряжи 256: Центральная частота 512: Крутящий момент	Заводское значение: 0+2+4=6

F133 Передаточное отношение	Диапазон значений: 0.10~200.0	Заводское значение: 1.00	
F134 Радиус передаточного колеса	Диапазон значений: 0.001~1.000 (m)	Заводское значение: 0.001	

• Вычисление скорости вращенияи линейной скорости:

Например,

макс. Частота F111=50.00Hz,

количество полюсов мотора F804=4,

передаточное отношение F133=1.00,

радиус передаточного шкива R=0.05m,

тогда

длина окружности шкива: $2\pi r = 2 \times 3.14 \times 0.05 = 0.314$ (метр)

Скорость вращения шкива:

 $60 \times$ частота/ (число пар полюсов × передаточное отношение) = $60 \times 50/$ (2×1.00) =1500rpm

Таким образом линейная скорость:

скорость вращения × длина окружности=1500×0.314=471(м/c)

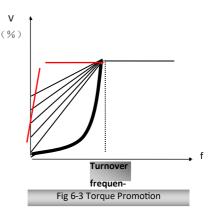
F136 Компенсация проскальзывания	Диапазон значений: 0~10	Заводское значение: 0
----------------------------------	-------------------------	-----------------------

В режиме V/F управления, при увеличении нагрузки уменьшается скорость вращения. Чтобы обеспечить скорсть вращения ротора близкую к синхронной скорости вращения при номинальной нагрузке, будет произведена компенсация проскальзывания в соответствии с заданными значениями.

Примечание: если подхват налету активен, то эта функция не активна. После отключения подхвата налету, функция активна.

	Диапазон значений:	
	0: Линейная компенсация;	
F137 Типы компенсации крутящего	1: Квадратичная компенсация;	Заводское значение: 0
момента	2: Многоточечная компенсация	заводское значение. о
	3: Автоматическая компенсация	
	4: V/F разделено	

(= X


F138 Линейная компенсация	Диапазон значений: 1~20	Заводское значение: зависит от модели инвертора
F139 Квадратичная компенсация	Диапазон значений:	
	1: 1.5	2
	2: 1.8	
	3: 1.9	Заводское значение: 1
	4: 2.0	
	5~6: не активно	

Если F106=2, то функция F137 активна.

Для компенсации крутящего момента на низкой частоте в режиме V/F, напряжение на выходе должно быть компенсировано.

Если F137=0, то выбрана линейная компенсация для нагрузки с постоянным крутящим моментом;

Если F137=1, то выбрана квадратичная компенсация крутящего момента (применяется при насосной нагрузке);

Если F137=2, то выбрана пользовательская много-

E140 Terms were accessive to a personne

точечная компенсация, которая применяется с особой нагрузкой такой как центрифуга и пр.;

Этот парамент должен увеличиваться когда нагрузка наибольшая, и уменьшен когда нагрузка наименьшая.

Слишком высокая компенсация крутящего момента может привести к перегреву электродвигателя и защитному отключению инвертора. Проверяйте двигатель во время повышения компенсации.

Если F137=3, то выбрана автоматическая компенсация крутящего момента для уменьшения проскальзования, синхронизации скорости вращения и предотвращения вибрации. Пользователь должен правильно ввести мощность двигателя, количество полюсов, скорость вращения, номинальный ток и сопротивление статора.См. гл. "Измерение параметров двигателя".

Если F137=4, то напряжение на выходе не связано с частотой на выходе, частота управляется источником частоты, а напряжение управляется F671.

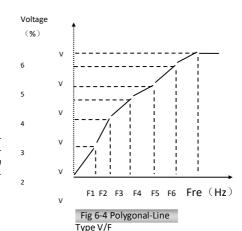
(Hz)	Диапазон значений: 0.00~F142	Заводское значение: 1.00
F141 Значение компенсации compensation point 1 (%)	Диапазон значений: 0~30	Заводское значение: Зависит от модели
F142 Частота точка F2	Диапазон значений: F140~F144	Заводское значение: 5.00

F143 Напряжение точка V2	Диапазон значений: 0~100%	Заводское значение: 13
F144 Частота точка F3	Диапазон значений: F142~F146	Заводское значение: 10.00
F145 Напряжение точка V3	Диапазон значений: 0~100%	Заводское значение: 24
F146 Частота точка F4	Диапазон значений: F144~F148	Заводское значение: 20.00
F147 Напряжение точка V4	Диапазон значений: 0~100%	Заводское значение: 45
F148 Частота точка F5	Диапазон значений: F146~F150	Заводское значение: 30.00
F149 Напряжение точка V5	Диапазон значений: 0~100%	Заводское значение: 63
F150 Частота точка F6	Диапазон значений: F148~F118	Заводское значение: 40.00
F151 Напряжение точка V6	Диапазон значений: 0~100%	Заводское значение: 81

Как показано на рис.6-3, если F317=0, VF кривая =Max (F138, F141)

Если F137=1, VF кривая = Max (F139, F141)

Если F137=2, VF кривая =Max (auto compensation, F141)


Если F317=2, автоматическая компенсация.

Значение F141 не может быть высоким, в противном случае инвертор переходит в состояние ошибки ОН и ОС.

Многоступенчатая кривая V/F определяется 12 параметрами от F140 до F151.

Значения параметров V/F кривой определяются в зависимости от нагрузки.

Примечание: V1<V2<V3<V4<V5<V6, F1<F2<F3<F4<F5<F6. Если на низкой частоте заданное напряжение слишком высокое, то мотор перегреется или выйдет из строя. У инвертора сработает защита по высокому току.

Примечание: если подхват на лету активен,то эта функция не активна. После отключения подхвата на лету, функция активна.

F152 Рабочее напряжение на выходе

Диапазон значений: 10~100

Заводское значение: 100

Рабочее выходное напряжение соответствует рабочей частоте. Например, когда выходная частота 300Hz и соответствующее ей выходное напряжение 200V (напряжение питания инвертора 400V), значение F118 должно быть установлено на 300Hz и значение F152 = $(200 \div 400) \times 100 = 50$. Таким образом значение F152 должно быть равным 50.

Обратите внимание на параметры указанные на шильдике двигателя. Если рабочее напряжение выше номинального, или частота выше номинальной частоты, мотор может выйти из строя.

Примечание: если подхват на лету активен, то функция компенсации проскальзывания не активна. После отключения подхвата на лету, функция активна.

F153 Значения несущей частоты

Диапазон значений: зависит

от модели

Заводское значение: зависит от

модели

Значение несущей частоты задается установкой параметра F153. Изменение значения несущей частоты может уменьшить моторный шум, избежать резонанса, уменьшить ток учетки и помехи. Например, уменьшение значения несущей частоты приводит к увеличению шума и температуры электродвигателя, при этом температура инвертора будет уменьшаться.

Если значение несущей частоты высокое, то ситуация будет противоположная.

Если частота на выходе инвертора высокая, то значение параметра несущей частоты должно быть увеличено. Зависимость рабочих характеристик от изменения несущей частоты представлена ниже в таблице:

Несущая частота	Низкая → Высокая
Звук мотора	Громко → Тихо
Кривая тока	Плохая → Хорошая
Температура двигателя	Высокая → Низкая
Температура инвертора	Низкая → Высокая
Ток уточки	Низкий → Высокий
Помехи	Низкие → Высокие

Диапазон значений:

F154 Автоматическая стабилиза-

ция напряжения 1: а

1: активно

2: Не активно во время торможения

Заводское значение: 0

Fura Drives 55 F2000

Данная функция позволяет автоматически поддерживать постоянное напряжение на выходе в случае колебания входного напряжения, но время торможения будет зависить от внутренних настоек PI. Если запрещено изменение времени торможения, то выберите F154=2.

F152 Рабочее напряжение на выходе	Диапазон значений: 10~100	Заводское значение: 100
F155 Дополнительное регулирование частоты	Диапазон значений:0.00~F111	Заводское значение: 0.00
F156 Полярность дополнительного регулирования частоты	Диапазон значений: 0~1	Заводское значение: 0
F157 Чтение доп. частоты		
F158 Чтение полярности		

При комбинированном способе регулировки частоты, когда F204=0, параметры F155 и

F156 содержат информацию о начальном уровне дополнительной частоты и о направлении

ее изменения. Параметры F157 и F158 позволяют узнать значение и полярность дополнительной частоты

Например, когда F203=1, F204=0, F207=1, аналоговая составляющая частоты равна 15 Γ ц, тогда кноп-кой «Up» пользователь может поднять частоту до 20 Γ ц. Так же можно установить параметры F155=5 Γ ц и F156=0 (0 – вперед, 1 – назад), тогда частота будет равна 20 Γ ц автоматически.

F159 Случайный выбор несущей волны	Диапазон значений 0: не активно 1: активно	Заводское значение: 0
------------------------------------	--	-----------------------

Когда F159=0, инвертор работает согласно значению параметра F153. Когда F159=1, инвертор работает в режиме случайного выбора несущей частоты.

Примечание: Когда значение несущей чатоты выбрано случайно, электродвигатель работает шумно, но с высоким крутящим моментом. Когда значение несущей чатоты установлено F153, шум двигателя будет уменьшен, но и крутящий момент будет уменьшен. Устанавливайте данный параметр по ситуации.

F160 Сброс на заводские настройки	Диапазон значений:	Заводское значение: 0
тоо сорос на заводение настроини	0: не активно	

- Когда есть необходимость установить заводские значения, установите F160=1. После сброса на заводские настройки, значение F160 автоматически изменится на 0.
- Сброс к заводским значениям невозможен для параметров обозначенных "0" в таблице параметров. Эти параметры установлены на заводе, и их не рекомендуется менять.

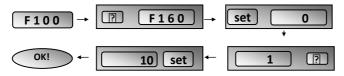
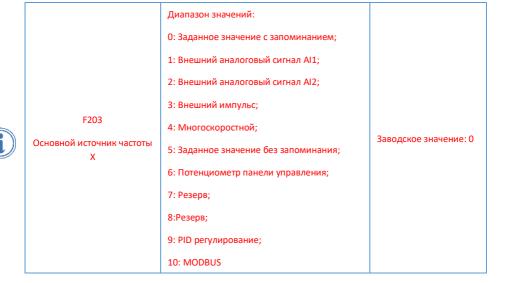


Рис. 6-5 Сброс на заводское значение

6.2 Параметры управления

Диапазон значений:	
0: Клавиатура;	
1: Терминал управления;	
2: Клавиатура + Терминал;	Заводское значение: 4
3: MODBUS;	
4: Клавиатура $+$ Терминал $+$ MODBUS	
Диапазон значений:	
0: Клавиатура;	
1: Терминал управления;	
2: Клавиатура + Терминал;	Заводское значение: 4
3: MODBUS;	
4: Клавиатура + Терминал + MODBUS	
	0: Клавиатура; 1: Терминал управления; 2: Клавиатура+Терминал; 3: МОDBUS; 4: Клавиатура+Терминал+МОDBUS Диапазон значений: 0: Клавиатура; 1: Терминал управления; 2: Клавиатура+Терминал; 3: МОDBUS;

- Выбор источника команд на пуск и стоп через F200 и F201.
- Команды управления: пуск, стоп, вперед, назад, толчковый режим и пр.
- К «командам клавиатуры» относятся: команды пуск/стоп заданные клавишами "Run" или "stop/reset".
- К «командам терминала» относятся команды start/stop данные через терминал "Run" определяемые F316-F323.
- Если F200=3 и F201=3, то команды пуск/стоп задаются через MODBUS.
- € Если F200=2 и F201=2, "команды клавиатуры» и «команды терминала» активны одновременно, если F200=4 и F201=4, все одновременно.



	диапазон значении:	
F202	0: Вперед;	Заводское значение: 0
Выбор направления.	1: Назад;	заводское значение. о
	2: Управление через терминал	

- Направление вращения задается этой функцией вместе с другими режимами управления скоростью. Если F500=2,то данная функция не активна.
- Когда выбран режим управления скоростью без управления направлением вращения, то направление вращения управляется данным параметром, например:

Направление заданное F202	Направление заданное другим режимом управления	Направление вращения	Прим.
0	0	0	0 - вперед. 1 - назад.
0	1	1	
1	0	1	
1	1	0	

Основной источник частоты задается данным параметром.

0: Заданное значение с запоминанием

Инвертор начинает работу с заданной частоты F113. Частота может быть изменена клавишами "up" или "down", или через терминал.

"Заданное значение с запоминанием" подразумевает, что значение заданной частоты будет сохранено как значение текущей частоты после получения команды "stop". Если необходимо сохранить заданную частоту в памяти после отключения питания, установите F220=1, т.е. память частоты после отключения питания активно.

1: Внешний аналоговый сигнал АІ1;

2: Внешний аналоговый сигнал AI2

Частота изменяется в соответствии с изменением токового сигнала(0-20mA или 4-20mA) или напряжения (0-5В или 0-10В), выбор вида аналогового сигнала производится переключателями, см. Рис. 4-4 и таблицу 4-2

Заводское значение диапазона входного канала AI1-0-10V, диапазона входного канла

AI2 - 0-20 mA. Если нужен диапазон 4-20mA, то установите F406=2,00. В случае ошибки измените настройки.

3: Входящий импульс.

Если частота задается импульсом, то импульс подается только через термина DI1. Максимальная частота импульсов 10К. Соответствующие параметры от F440 до F446.

4: Многоскоростное управление

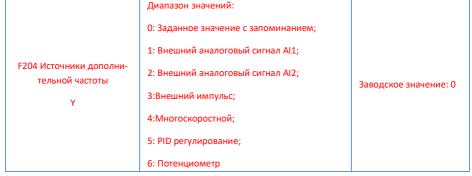
Многоскоростное управление производится терминалом управления; параметры F316~F323. Частота устанавливаеся многоскоростным терминалом или автоматически.

5: Заданное цифровое значение без памяти

Инвертор начинает работу с заданной частоты F113. Частота может быть изменена клавишами "up" или "down", или через терминалы "up"и "down".

"Заданное цифровое значение без памяти" означает что после получения команды стоп инвертор не запомнит текущую частоту и получив команду пуск начнет работу с заданной частоты F113. Также инвертор не запомнит текущую частоту после отключения питания независимо от значения параметра F220.

6: Потенциометр


Частота регулируется потенциометром на панели управления. Для использования потенциометра на выносной панели установите F422=1.

9: PID регулирование

Если выбрано PID регулирование, значение частоты будет равно частоте установленной PID. См. параметры PID регулирования.

10: MODBUS

Частота задается через MODBUS.

- Если дополнительная частота Y задана как независимая частота, то функция данного параметра точно такая же как для основной частоты X.
- Если F204=0, то начальное значение частоты задано параметром F155. Когда дополнительная регулировка независимо управляет скоростью, то значение параметра F156 не актуально.
- Если F207=1 или 3, и F204=0, то начальное значение частоты задано параметром F155, а полярность задана параметром F156, начальное значение частоты и полярность можно проверить через F157 и F158.
- Если дополнительная частота соответствует аналоговому сигналу (Al1, Al2), диапазон регулировки задан параметрами F205 и F206.

Примечание: Параметры F203 и F204 не должны иметь одинаковые значения

	F205 выбор диапазона регулировки дополнительной	Диапазон значений: 0: Относительно максимальной частоты;	Заводское значение: 0
)	частоты Ү	1: Относительно основной частоты X	
	F206 диапазон регулировки	Диапазон значений: $0{\sim}100$	Заводское значение: 100

• Во время комбинированного контроля частоты параметр F205 указывает диапазон регулировки, параметр F206 контролирует регулировку в пределах диапазона.

Диапазон значений:

		Ananasen sha termin		
	0: X; 1: X+Y;			
	F207 Выбор источника частоты	2: Х или Ү (терминальное переключение);	2	
		3: Х или Х+Ү (терминальное переключение);	Заводское значение: 0	
		4: Комбинация многоскоростной и аналоговый		
		5: X-Y 6: X+Y-Y _{MAX} *50%		

- Выбор источника заданной частоты. Частота задается комбинацией основной частоты X и дополнительной частоты Y.
- Если F207=0, частота задается источником основной частоты.
- Если F207=1, X+Y, частота задается добавлением источника основной частоты к источнику дополнительной частоты. X или Y могут задаваться PID.
- Если F207=2, переключение между источником основной частоты и источником дополнительной частоты производтся терминалом управления.
- Если F207=3, переключение между заданной частотой и суммарно заданной частотой (X+Y) производтся терминалом управления. Х или Y может быть заданы PID.

- Если F207=4, многоскоростное управление основной частотой имеет приоритет над аналоговым управлением дополнительной частотой (подходит только для F203=4 F204=1).
- Если F207=5, X-Y, частота задается путем вычитания источника дополнительной частоты из основной. Если частота задана по основной частоте или дополнительной частоте, то возможно PID регулирование скорости.
- Если F207=6, X+Y-Y $_{MAX}$ *50%, частота задается обоими источниками основной и дополнительной частоты. Х или Y может задаваться PID. Если F205=0, то Y_{MAX} =F111*F206. Если F205=1, то Y_{MAX} =X*F206.

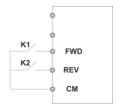
Примечание:

- Если F203=4 и F204=1, разница между F207=1 и F207=4 в том, что если F207=1, выбран суммарный источник многоскоростного управления и аналогового, если F207=4, то выбрано многоскоростное управление с многоскоростным и аналоговым управлением одновременно. Если пропадает многоскоростное управление и остается аналоговое, то инвертор будет управляется аналоговым сигналом.
- Переключение между источниками частоты производится выбором параметра F207.
 Например переключение между PID регулированием и нормальным управлением скоростью, между многоскоростным управлением и аналоговым, между PID регулированием и аналоговым управлением, и т.д.
- При многоскоростном режиме время разгона/остановки каждой скорости задано соответствующим параметром. При комбинированном контроле время разгона/ остановки задано параметрами F114 и F115.
- Автоматический многоскоростной режим не может быть скомбинирован ни с одним другим режимом.
- 5. Когда F207=2 (источник основной частоты и источник дополнительной частоты могут переключатся терминалом управления), если управление основной частотой отлично от многоскоростного управления, то управление дополнительной частотой может быть автоматическим многоскоростным (F204=5, F500=0). Режим управления (определяемый X) и автоматическое многоскоростное управление (определяемое Y) могут свободно переключатся через терминал управления.
- 6. Если F207=6, F205=0 и F206=100, mo X+Y-Y_{MAX}*50%=X+Y-F111*50%, и если F207=6, F205=1 и F206=100, mo X+Y-Y_{MAX}*50%=X+Y-X*50%.

- Если выбрано 2-х или 3-х линейный режим, то F200, F201 и F202 не активны.
- Пять режимов доступно для управления работой терминала.

Примечание: "FWD", "REV" и "X" - контакты, обозначенные в программировании DI1 \sim DI8.

1: Две линии, режим 1: это самый распространенный режим. Направление вращения управляется терминалами FWD и REV.

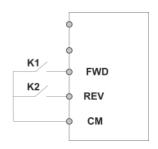

Например: терминал "FWD" ----- "открыт": стоп, "закрыт": вперед;

Терминал "REV" ----"открыт": стоп, "закрыт": реверс;

Терминал "СМ" ----общий порт

K1	K2	Команда
0	0	Стоп
1	0	Вперед
0	1	Назад
1	1	Стоп

2. Две линии, режим 2: если используется этот режим, то терминал FWD активен, но направление вращения управляется терминалом REV.


Например: терминал "FWD" ----- "открыт": стоп, "закрыт": пуск;

Терминал "REV"-----"открыт": вперед, "закрыт": реверс;

Терминал "СМ" ---- общий порт

K1	K2	Команда
0	0	Стоп
0	1	Стоп
1	0	Вперед
1	1	Назад

3. Три линии, режим 1:

В данном режиме задействован терминал X, направление вращения управляется терминалами FWD и REV. Управление импульсным сигналом активно.

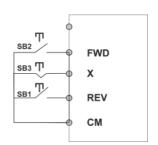
Команда стоп возможна через открытие терминала Х.

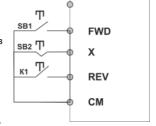
SB3: клавиша Стоп.

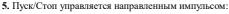
SB2: клавиша Вперед.

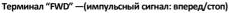
SB1: клавиша Реверс.

4. Три линии, режим 2:

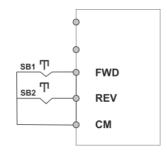

В данном режиме задействован терминал X, управление пуском через терминал FWD. Направление вращения управляется терминалом REV. Команда стоп возможна через открытие терминала X..




SB1: клавиша Пуск


SB2: клавиша Стоп

К1: переключатель направления. Открыт-вперед, закрыт- реверс.



Терминал "REV"—(импульсный сигнал: реверс/стоп)

Терминал "СМ" — общий порт

Примечание: если поступает импульс от SB1, инвертор запустится вперед. Если поступает импульс снова, то инвертор остановится.

Если поступает импульс от SB2, инвертор запустится назад. Если поступает импульс снова, то инвертор остановится.

Диапазон значений:

0: остановка по времени торможения;

1: свободная остановка

2: остановка DC тормозом

Заводское значение: 0

Когда поступает сигнал остановки, режим остановки определяется данным параметром:

F209=0: остановка по времени торможения

Инвертор уменьшит частоту в соответствии с заданной кривой разгона/торможения и временем торможения до 0, и инвертор остановится. Это наиболее часто применяемый способ остановки. Если подхват на лету активен, то данная функция не активна.

F209=1: свободная остановка

F209 Способ остановки мотора

После поступления команды остановки инвертор перестанет подавать питание на мотор. Мотор остановится механически.

Если F209=2, после поступления команды остановки, остановка будет осуществлена DC тормозом. Установите F656, F603 и F605 правильно, чтобы избежать ошибки.

F210 Точность регулировки частоты Диапазон значений: 0.01~2.00 Заводское значение: 0.01

Когда инвертор в рабочем режиме, в режиме управления через клавиатуру, точность регулировки частоты установлена F210, диапазон значений от 0.01 до 2.00. Например, если F210=0.5, то при однократном нажатии клавиш ▲/▼ частота изменится на 0.5Hz. Данная функция активна когда инвертор находится в рабочем режиме.

F211 Скорость изменения частоты

Диапазон значений: 0.01~100.0

Заводское значение: 5.00

Если нажать клавишу UP/DOWN, то частота будет манятся с установленной скоростью. Заводское значение 5.00Hz/cek∙

Eura Drives 63 E2000

F212 Память направления вращения

Диапазон значений:

0: не активно 1: активно Заводское значение: 0

Эта функция активна при включенном режиме три линии, режим 1 (F208=3).

- Если F212=0, то после остановки инвертора и после отключения питания направление вращения не запоминается.
- Если F212=1, после остановки инвертора и после отключения питания, и при запуске нет сигнала направления вращения, то инвертор запустится в соответствии с запомненным направлением.

F213 Автостарт	Диапазон значений: 0: не активно 1: активно	Заводское значение: 0
F214 Автостарт после сброса ошибки	Диапазон значений: 0: не активно 1: активно	Заводское значение: 0

Автоматический старт после включения питания активируется параметром F213

Если F213=1, и отключено питание инвертора, то после включения питания инвертор запустится автоматически по истечении времени установленного F215 в том же режиме, что был до отключения питания. Если F220=0, т.е. память частоты после отключения питания не активна, то инвертор запустится с частотой, установленной в параметре F113.

Если F213=0, и отключено питание инвертора, то после включения питания инвертор не запустится автоматически пока не получит команду пуск.

Автостарт после сброса ошибки активируется параметром F214

Если F214=1, и произошла ошибка, инвертор произведет сброс ошибки автоматически по истечении времени установленного параметром F217. После сброса ошибки инвертор запустится автоматически по истечении времени установленного параметром F215.

Если память частоты после отключения питания активна (F220), инвертор запустится с текущей частотой до отключения питания. В противном случае инвертор запустится с частотой, установленной в параметре F113.

Если ошибка произошла во время движения, инвертор сбросит ошибку и сделает автостарт. Если ошибка произошла во время режима ожидания, то произойдет только сброс ошибки.

Если F214=0, то после произошедшего сбоя на дисплее появится код ошибки и вернуть инвертор в работоспособное состояние можно будет только вручную.

F215 это время задержки автостарта для F213 и F214. Диапазон значений от 0.1сек. до 3000.0 сек.

F216 Количество автостартов в случае повторяющихся ошибок	Диапазон значений: 0~5	Заводское значение: 0
F217 Время задержки после сброса ошибки	Диапазон значений: 0.0~10.0	Заводское значение: 3.0
F219 EEPROM запись	Диапазон значений: 0:запись возможна 1: запрет записи	Заводское значение: 1

В параметре F216 устанавливается количество автостартов в случае повторяющейся ошибки. Если количество запусков превышает установленное значение, инвертор не сбросит ошибку или не запустится автоматически после ошибки. Инвертор запустится только вручную.

Параметр F217 устанавливает время задержки сброса ошибки. Диапазон значений от 0.0 до 10.0 сек. , т.е. интервал между моментом появления ошибки и сбросом ошибки.

Если F219=1 (адрес 2001Н не управляется PC/PLC), измененные параметры не сохраняются в EEPROM. Это означает, что они не запоминаются при отключении питания. Если F219=0 (адрес 2001Н не управляется PC/PLC), измененные параметры сохраняются в EEPROM. Это означает, что они запоминаются при отключении питания.

F220 Запоминание частоты после отключения питания

Диапазон значений: 0: не активно;

Заводское значение: 0

1: активно

Параметр F220 активирует запоминание частоты после отключения питания.

Данная функция активна для F213 и F214. Запоминание рабочего состояния до отключения питания или неисправности активируется этой функцией.

 Функция запоминания частоты активна для основной частоты и дополнительной частоты с заданным числовым значением. Поскольку цифровое задание частоты имеет положительную и отрицательную полярность, это устанавливается параметрами F155 и F156.

F222 запоминание значения счетчика

Диапазон значений:

0: не активно; 1: активно

Заводское значение: 0

Параметр F222 активирует запоминание значения счетчика.

F224 если заданная частота меньше минимальной частоты

Диапазон значений:

0: стоп

1: пуск на минимальной частоте

Заводское значение: 0

- F224=0, если заданная частота меньше минимальной частоты, инвертор остановится.
- F224=1, если заданная частота меньше минимальной частоты, инвертор запустится на минимальной частоте.

Таблица 6-1 Возможные комбинации управления частотой

Возможная комбинация.

О: Невозможная комбинация.

Режим автоматического управления скоростью невозможен в сочетании с другими режимами. Если комбинация включает в себя автоматическое управление скоростью, то будет активен только основной режим управления скоростью.

F204	0. заданное цифровое	1 Внешний аналоговый	2 Внешний аналоговый	3 Входящий импульс	4 Многоскорост- ное управление	5 PID	6 Аналоговый сигнал AI3
F203	значение с памятью	сигнал АІ1	сигнал AI2	,y,,	пос управление	регулирование	Cinna, rus
0 заданное цифровое значение с памятью	0	•	•	•	•	•	•
1 Внешний аналоговый сигнал Al1	•	0	•	•	•	•	•
2 Внешний аналоговый сигнал AI2	•	•	0	•	•	•	•
3 Входящий импульс	•	•	•	0	•	•	•
4 Многоскоростное управление	•	•	•	•	0	•	•
5 Digital setting	0	•	•	•	•	•	•
6 Аналоговый сигнал AI3	•	•	•	•	•	•	0
9 PID регулирование	•	•	•	•	•	0	•
10 MODBUS	•	•	•	•	•	•	•

Функции линейного перемещения

Линейное перемещение широко используется в текстильной и химической промышленностях.

		0: Выкл.	
F22F	D	1: Режим перемещения	20
F235	Режим управления перемещением	2: Режим перемещения	Заводское значение: 0
		3: Режим перемещения	

- F235=0, данная функция не активна.
- F235=1, режим линейного перемещения 1, центральная частота устанавливается параметром
 F242, рабочий процесс показан на рис. 6-6.
- F235=2, режим линейного перемещения 2, центральная частота понижается, рабочий процесс показан на рис. 6-7.
- F235=3, режим линейного перемещения 3, центральная частота устанавливается параметром F203. В данном режиме если центральная частота установленная F203 ниже чем нижний предел центральной частоты, то инвертор не остановится. В других режимах линейного перемещения центральная частота управляется параметром F243.

	_	0:	не активно	
F236	Сканирование позиционирования	1:	активно	Заводское значение: 0

Режим сканирования позиционарования: при активном режиме если инвертор получает сигнал об остановке, полный челнок, обрыв пряжи, крайнее положение, то инвертор выйдет на частоту сканирования позиционирования (F252). Затем начнется время ожидания сканирования позиционирования (F253), если инвертор получит стоп сигнал позиционирования, то инвертор остановится (стоп сигнал позиционирования не активен до истечения времени ожидания). Если не будет стоп сигнала позиционирования, то инвертор остановится автоматически по достижении максимального времени позиционирования (F524). Примечание: Если F524=0, то инвертор не остановится автоматически.

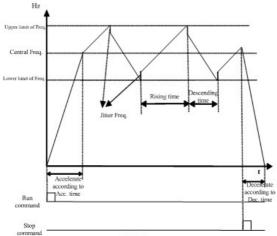


Fig 6-6

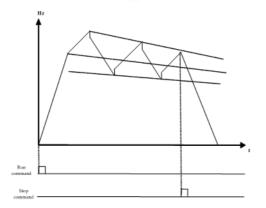
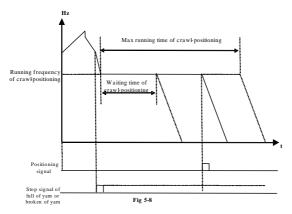



Fig 6-7

F237 Источник сигнала 0: Авто пуск ; Заводское значение: 0 1: пуск через терминал X

- Если F237=0 и F235≠0, то инвертор запустится в режиме линейного перемещения.
- Если F237=1 и F235≠0, то пользователь должен установить терминал DIX как пусковой терминал линейного перемещения, когда данный терминал активен, функции линейного перемещения активны.

			0: Остановка на заданной длине	
		Режим остановки	1: Остановка на заданном радиусе намотки	
	F238	при достижении длины.	2: Без остановки на заданной длине, индикация заполнения.	Заводское значение: 0
		H	 достижение заданного радиуса, индикация заполнения. 	
		Память режима	0: Память в состоянии ожидания и отсутствии питания	
	F239	линейного пере-	1: Память в состоянии ожидания .	Заводское значение: 0
		мещения	2: Память в состоянии отсутствия питания.	
			3: Без памяти.	

Если F238=0 или1, то при при достижении заданной длины или заданного радиуса инвертор остановится.

Если F238=2 или 3, то при придостижении заданной длины или заданного радиуса терминалы (DO1, DO2 и терминал выходного реле) выведут сигнал. Инвертор не остановится и на дисплее отобразится "OVER".

F240	Предустановленная частота (Hz)	F112~F111	Заводское значение: 5.00
F241	Время предустановленной частоты (сек)	0~3000	Заводское значение: 0

F240 используется для определения рабочей частоты перед входом в режим линейного перемещения.

F241 используется для определения времени работы инвертора на предустановленной частоте.

F242	Центральная частота (Hz)	F243~F111	Заводское значение: 25.00
F243	Нижний предел центральной частоты (Hz)	F112~F242	Заводское значение: 0.50
F244	Скорость убывания центральной частоты (Hz / сек.)	0.100~65.000	Заводское значение: 0.500
F247	Установка амплитуды	0: относительно макс. частоты 1: относительно центральной частоты	Заводское значение: 1
F248	Амплитуда (%)	0.00~100.00	Заводское значение: 10.0
F249	Скачек частоты (%)	0.00~50.00	Заводское значение: 30.00
F250	Время увеличения частоты (сек)	0.1~3000	Заводское значение: 10.0
F251	Время уменьшения частоты (сек)	0.1~3000	Заводское значение: 10.0
F252	Частота сканирования позицио- нирования (Hz)	F112~F111	Заводское значение: 3.00
F253	Время ожидания сканирования позиционирования (сек)	0.0~3000	Заводское значение: 5.0
F254	Максимальное время позиционирования (S)	0.0~3000	Заводское значение: 10.0

См. Рис. 6-6, 6-7 и 6-8.

Если нижний предел частоты амплитуды ниже чем минимальная частота F112, то нижний предел частоты амплитуды переключится на минимальную частоту инвертора. Если верхний предел частоты амплитуды выше чем максимальная частота F111, то предел частоты амплитуды переключиться на максимальную частоту.

Скачек частоты это процентное отношение к амплитуде, которое устанавливается параметром F249.

F257	Общая длина (Km)	0.00~6500	Заводское значение: 0.00
F258	Фактическая длина (Km)	0.00~65.00	Заводское значение: 0.00
F259	Заданная длина (Km)	0.00~65.00	Заводское значение: 0.00
F260	Количество импульсов счетчика длины	0.01~650.0	Заводское значение: 1.00

В режиме управления заданной длиной, активны функции F257~F260.

F264	64 Канал обратной связи заданного радиуса		Заводское значение: 0
F265	Отображаемое значение заданного радиуса	0~10000	Заводское значение: 1000
F266	Выходное напряжение в режиме заданного радиуса (V)	0~10.00	Заводское значение: 5.00
F267	Гистерезис напряжения сигнала заполнения.	0~10.00	Заводское значение: 0.00

- F265 используется для отображения значения соответствующего максимальному аналоговому значению.
- F266 используется для установки напряжения датчика заданного радиуса при достижении заданного радиуса.
- Гистерезис напряжения устанавливается параметром F267. Например: если F266=5.00, F267=0.30, то только когда напряжение обратной связи ниже 4.70V, инвертор воспримет это как сигнал о заполнении.

F272	Время задержки при обрыве пряжи и запутывании (сек)	0.0~3000	0.0

- Время задержки после определения обрыва пряжи и запутывания.
- При обрыве пряжи отобразится BRK1. При заполнении отобразится BRK2.

F275	Поиск значения частоты	F112~F111	25.00
F276	Поиск ширины частоты	0.00~20.00	0.50
F277 3-e Acceleration Time (S)	Третье время разгона (сек)		Зависит от
F278 3-e Deceleration Time (S)	Третье время торможения (сек)	0.1-3000	модели инвертора
F279	Четвертое время разгона (сек)		
F280	Четвертое время торможения (сек)		

Когда инвертор выходит на частоту заданную параметром F275, то на выходе терминала будет сигнал.

6.3. Многофункциональные входные и выходные терминалы.

6.3.1 Цифровые многофункциональные выходные терминалы

F300	Релейный выход	Диапазон значений: 0~43	Заводское значение: 1
F301	DO1 выход		Заводское значение: 14
F302	DO2 выход	Подробное описание см. в таблице 6-2.	Заводское значение: 5

Инверторы серии E2000 имеют один многофункциональный релейный выходной терминал. Инверторы мощностью до 22kW включительно имеют один многофункциональный цифровой выходной терминал (терминал DO2 отсутствует), инверторы с мощностью более 22 kW имеют два многофункциональных цифровых выходных терминала.

В системах водоснабжения при выборе фиксированного или синхронизированного режима переключения релейный выход и выход DO1 не активны.

Описание

Таблица 6-2 Функции цифрового выходного терминала

0	-	Нет функции	
1	Защита от ошибки	Если инвертор работает неправильно на выходе сигнал.	
2	Скрытая частота 1	См. Параметры от F307 до F309.	
3	Скрытая частота 2	См. Параметры от F307 до F309.	
4	Свободная остановка	В состоянии свободной остановки, после получения команды стоп, на выходе сигнал до полной остановки.	
5	Рабочее состояние 1	Отображает, что инвертор в работе, сигнал на выходе.	
6	Зарезервировано	Зарезервировано	
7	Разгон/торможение	Сигнализирует, что инвертор в состоянии разгона/торможения	
8	Достижение заданного значения	Терминал активируется при достижении значения F314.	
9	Достижение значения	Терминал активируется при достижении значения F315.	
10	Перегрузка инвертора	После половины расчетного времени защиты на выходе появляется сигнал, который исчезает после остановки или срабатывания защиты	
11	Перегрузка мотора	После половины расчетного времени защиты на выходе появляется сигнал, который исчезает после остановки или срабатывания защиты	
12	Срыв	Если во время разгона/торможения прекращается разгон/ торможение из-за срыва , на выходе появляется сигнал.	
13	Готовность к запуску Готов к запуску - на выходе сигнал.		
14	Рабочее состояние 2	Отображает, что инвертор работает. Если инвертор работает на частоте ОНZ, то это воспринимается как рабочее состояние, и на выходе сигнал.	

Значение

Функция

Значение	Функция	Описание
15	Порог заданной частоты	Инвертор работает с заданной частотой - на выходе сигнал. См. F312.
16	Перегрев	Когда температура достигнет 80% от заданного значения, на выходе будет сигнал. Когда сработает защита от перегрева или температура понизится ниже 80% от заданного значения, сигнал пропадет.
17	Превышение предустановленного тока на выходе	Когда ток на выходе достигает порогового значения, на выходе будет сигнал. См. F310 и F311.
18	Обрыв аналоговой линии.	Отображает, что инвертор обнаружил обрыв лининии аналогового входа, на выходе сигнал. См. F741.
19	Недостаточная нагрузка 1	См. FA26 и FA27.
20	Отсутствие тока на выходе	Когда ток на выходе падает до нуля, то по истичении времени заданного параметром F755, на выходе будет сигнал. См. F754 и F755.
21	Выход управляемый адресом 2005Н	 1- активно. 0- не активно
22	Выход управляемый адресом 2006Н	
23	Выход управляемый адресом 2007Н	
24-29	Зарезервировано	
30	Главный насос работает	Сигнализирует о работе главного насоса.
31	Вспомогательный насос работает	Сигнализирует о работе вспомогательного насоса.
32	Превышен предел давления	Показывает заначение верхнего предела давления при PID регулировании выбранной отрицательной обратной связи, и измеренное давление превышает максимальное давление установленное F503
35	Стоп сигнал полный челнок, обрыв пряжи, запутывание пряжи и ручная остановка I	Сигнал об остановке из-за полного челнока, обрыва пряжи, запутывания и остановке в ручную.
36	Полный челнок	Сигнал о полном челноке.
37	Запуск режима линейного перемещения	Сигнал о запуске режима линейного перемещения.
38	Линейное перемещение	Сигнализирует о том, что инвертор в состоянии управления линейным перемещением.
39	Определение частоты пряжи	Эта функция активна когда частота выше частоты пряжи, иначе не активна.
42	Второй мотор работает	Сигнал, работает второй мотор.
43	Время соединения вышло 2	Если F907>0, и получены данные, и если по истечении времени установленного F907 следующие данные не получены, на выходе будет сигнал. После получения очередных данных, сигнал сбросится и отсчет времени начнется заново.

		Диапазон значений:	
F303	тип выхода DO	0: уровень	Заводское значение: 0
		1: импульс	

- Если F303=0, все функции терминала в таблице 5-2 мугут быть заданы параметром F301.
- Если F303=1, DO1 становится высокоскоростным импульсным выходом. Максимальная частота импульса 100 KHz. См. F449、F450、F451、F452、F453.

F304	отношение кривой S в начальной стадии (%)	Диапазон значений: $2.0\sim$ 50.0	30.0
F305	отношение кривой S в конечной стадии (%)	Диапазон значений: $2.0{\sim}50.0$	30.0
F306		Диапазон значений:	0
	режим разгона/торможения	0: прямолинейный	
		1: кривая S	

См. Рис. 5-9 о кривой S разгона/торможения:

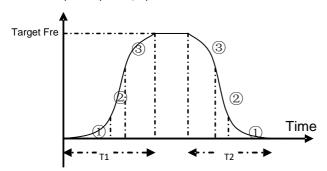


Рис. 6-9 S Кривая S разгона/торможения

Т1 – это время разгона от текущей частоты до заданной частоты.

Т2 – это время торможения от текущей частоты до заданной частоты.

Во время разгона, на этапе ①, частота растет постепенно, на этапе ②, частота постоянна, на этапе

③, частота понижается постепенно.

F307	Типичная частота 1	Диапазон значений: F112~F111Hz	Заводское значение: 10
F308	Типичная частота 2		Заводское значение: 50
F309	Ширина Типичной частоты	Диапазон значений: 0~100%	Заводское значение: 50

Если F300=2, 3, F301=2, 3 и F302=2, 3 и выбрана Типичная частота, то эта группа параметров устанавливает Типичную частоту и ее ширину. Например: установлено F301=2, F307=10, F309=10, то когда частота выше F307, то на выходе DO1 будет сигнал. Когда частота ниже чем (10-10*10%) =9Hz, на выходе DO1 не будет сигнала.

F310	О Характерный ток (А)	Диапазон значений: 0~1000	Заводское значение: Rated
F31:	1 Ширина тока (%)	Диапазон значений: 0~100	Заводское значение: 10

Если F300=17, F301=17 и F302=17 и выбран характерный ток, то эта группа параметров устанавливает характерный ток и его ширину.

Например: установлено F301=17, F310=100, F311=10, когда ток выше F310, то на выходе DO1 будет сигналі. Когда ток ниже чем (100-100*10%) =90A, на выходе DO1 не будет сигнала.

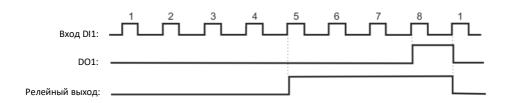
F312	Порог заданной частоты (Hz)	Диапазон значений: 0.00∼5.00	Заводское значение: 0.00
------	-----------------------------	------------------------------	--------------------------

Если F300=15 и F301=15, то диапазон порога заданной частоты устанавливается F312.

Например: Если F301=15, заданная частота 20HZ и F312=2, текущая частота достигает 18Hz (20-2), то на выходе DO1 будет сигнал пока частота не достигнет заданной частоты.

	F313	Дискретность счетчика	Диапазон значений:1~65000	Заводское значение: 1
)	F314	Установленное значение счетчика	Диапазон значений: F315~65000	Заводское значение: 1000
	F315	Заданное значение счетчика	Диапазон значений: 1~F314	Заводское значение : 500

Дискретность счетчика это отношение входящих импульсов к счету инвертора,


Т.е. если F313=3, инвертор считает один раз каждые 3 входящих импульса.

 Установленное значение задает импульсы выходных терминалов (терминал DO1 или релейный выход) запрограммированных на "достигнутое значение счетчика" входящих импульсов на DI1.
 Счетчик обнулится после достижения заданного значения.

Как показано на Рис. 6-10: если F313=1, F314=8, F301=8, то DO1 выведет сигнал когда на входе DI1 будет 8-й импульс.

Заданное значение счетчика задает импульсы выходных терминалов (терминал DO1 или релейный выход) запрограммированных на "достигнутое значение счетчика" входящих импульсов на DI1.

Как показано на Рис. 6-10: если F313=1、F314=8, F315=5, F300=9, на релейном выходе будет сигнал, когда на входе DI1 будет 5-й импульс, сигнал будет пока не будет достигнуто" Установленное значение счетчика 8".

Eura Drives 73 E2000

6.3.2 Цифровые многофунуциональные входные терминалы

F317 терминал DI2		Заводское значение:
	SO. FICTORIECE BPCM/I Z	
	60: Истекшее время 2	
	58: Направление	
	57: Автопуск	
	56: Ручной пуск	
	55: переключение между ручным пуском и авто пуском	
	54: Сброс частоты	
	53: Контроль	
	51: Переключение между моторами	
	49: PID пауза	
	38: Нормально закрытая РТС термо защита	
	37: Нормально открытая РТС термо защита	
	34: Переключение разгон /торможение 2	
	33: Аварийное пожарное управление	
	32: Переключение на пожарное давление;	
	31: Сигнал наличия воды	
	30: Сигнал отсутствия воды;	
	29: сигнал длины пряжи и состояния	
	28: сигнал позиционирования	
	27: запутывание пряжи	
	26: обрыв пряжи	
	25: Линейное перемещение активно.	
	24: режим управления линейным перемещением	
. 520 (23: Сброс счетчика	2230Monoc Sila letivie.
F316 терминал DI1	22: Вход счетчика:	Заводское значение:
	21: выбор источника частоты;	
	20: переключение между скоростью и крутящим моментом	
	19: Зарезервировано;	
	18: время переключения разгона/ торможения 1;	
	17: трех линейный вход "Х";	
	16: "REV" реверс;	
	15: "FWD" вперед;	
	14: DOWN уменьшение частоты;	
	13: UP увеличение частоты;	
	12: толчковый реверс;	
	11: толчок вперед;	
	10: запрет разгона/торможения;	
	9: аварийная остановка;	
	7: сброс ошибки; 8: свободная остановка;	
	6: терминал многоскоростной 4;	
	5: терминал многоскоростной 3;	
	4: терминал многоскоростной 2;	
	3: терминал многоскоростной 1;	
	2: стоп;	
	1: пуск;	
	0: функция не задана;	

F318 терминал DI3	Заводское значение: 15
F319 терминал DI4	Заводское значение: 16
F320 терминал DI5	Заводское значение: 7
F321 терминал DI6	Заводское значение: 8
F322 терминал DI7	Заводское значение: 0

- Терминалы свободной остановки и аварийной остановки имеют наивысший приоритет.
- Если выбран импульсный вход, то терминал DI1 устанавливается как импульсный вход автоматически.
- Когда терминалы DIX управляются только PC/PLC, установите все терминалы на 0.

Примечание: Инверторы мощностью $22 \, kW$ и ниже имеют $6 \, цифровых многофункциональных входных терминалов DI1<math>^\sim$ DI6.

Таблица 6-3 Описание для цифровых многофункциональных входных терминалов

Значение	Функция	Описание	
0	Нет функции	Терминал не будет работать. Эта функция может быть использована для предотвращения ошибок.	
1	Пуск	Запуск инвертора, действует аналогично клавише «Run» панели управления	
2	Стоп	Остановка инвертора, действует аналогично клавише «Stop» панели управления	
3	Терминал многоскоростной 1	15 предустановленных скоростей многоскоростного режима запускаются комбинацией данных контактов См. табл. 6-6.	
4	терминал многоскоростной 2		
5	терминал многоскоростной 3		
6	терминал многоскоростной 4		
7	Сброс ошибки	Сброс в случае ошибки, действует аналогично клавише «Reset» панели управления	
8	Свободная остановка	Инвертор перестает подавать питание, и процесс остановки мотора не управляется инвертором. Этот режим обычно используется, когда нагрузка имеет большую инертность или когда не нет требования ко времени остановки. Данный режим имеет такую же функцию как F209.	

9	Аварийная остановка	После получения внешнего сигнала аварийной остановки
		инвертор будет немедленно остановлен.
10	Запрет разгона/торможения	После активации данного терминала инвертор не будет управляться внешними сигналами (кроме сигнала стоп).
		Движение будет происходить на частоте соответствующей
		моменту получения сигнала.
11	толчок вперед	См. F124, F125 и F126 .
12	толчковый реверс	
13	UP увеличение частоты	Изменение частоты. Скорость изменения задается параметром F211.
14	DOWN уменьшение частоты	
15	"FWD" вперед	Если команда старт/стоп задается терминалом или комбинацией терминалов, то то направление движения управляется внешними терминалами.
16	"REV" назад	
17	трех линейный вход "Х"	Терминалы "FWD"、 "REV"、 "CM" реализовывают трех=линейное управление. См. F208.
18	время переключения разгона/ торможения 1	См. таблицу 6-4.
19	Зарезервировано	Зарезервировано
20	Зарезервировано	Зарезервировано
21	выбор источника частоты	Если F207=2, то данным контактом терминала можно
		выбирать между основным и дополнительным контролем
		частоты. Также если F207=3, можно переключаться между X и (X+Y).
22	Вход счетчика	Встроенный счетчик импульсов.
23	Сброс счетчика	Сброс счетчика на 0.
24	Сброс режима линейного перемещения	Когда этот терминал активен, траверс статус будет сброшен в состоя- ние остановки. После того, как преобразователь работает снова, траверс процесс будет повторяться снова.
25	Линейное перемещение активно	Если F235≠0 и F237=1,то этот терминал используется для управления старт/стоп режимом линейного перемещения Если инвертор в рабочем режиме и данный терминал активен, то режим линейного перемещения запускается.
26	обрыв пряжи	Если этот терминал активен, то инвертор остановится. Если функция позиционирования активна, то инвертор уйдет на частоту позиционирования, после позиционирования инвертор остановится. Если терминал не активен, то инвертор работает в обычном режиме.
27	запутывание пряжи	
28	сигнал позиционирования	Во время процесса позиционирования и после времени ожидания F253, если терминал активен, то инвертор остановится.
29	сигнал длины пряжи и состоя- ния	Этот терминал используется для очистки фактической длины нити и траверс status.
30	Сигнал отсутствия воды	Если PID регулирование активно и FA26=1, то эта функция активна. Пока отсутствует вода, инвертор будет назодится в состоянии защиты.

	T.	
31	Сигнал наличия воды	Если PID регулирование активно и FA26=1, то эта функция активна. Если воды достаточно, инвертор сбросит защиту автоматически.
32	Переключение на пожарное давление	Если PID регулирование активно и этот терминал активен, то уста- новленное значение PID переключится на заданное пожарное давление (FA58).
33	Аварийное пожарное управле- ние	Если аварийный пожарный режим активен (FA59), то инвертор перейдет в аварийный пожарный режим.
34	Переключение разгон / торможение 2	См. таблицу 6-4.
37	Нормально открытая РТС термо защита	Если эта функция активна, подключено внешнее нормально открытое термо реле. Когда контакт замыкается и инвертор находится в рабочем состоянии, то инвертор перейдет в состояние ОН1.
38	Нормально закрытая РТС термо защита	Если эта функция активна, подключено внешнее нормально закрытое термо реле. Когда контакт размыкается и инвертор находится в рабочем состоянии, то инвертор перейдет в состояние ОН1.
49	PID пауза	PID регулирование временно не активно.
51	Переключение между мотора- ми	Когда FE00=2 и эта функция активна, происходит переключение на второй мотор.
53	Контроль	По истечению времени установленного F326, в течение которого отсутствует импульс, инвертор перейдет в Err6, и инвертор остановится в соответствии с параметром F327.
54	Сброс частоты	В приложении 4, если функция активна, то заданная частота изменится на значение установленное F113.
55	переключение между ручным пуском и авто пуском	В приложении 2, функция применяется для переключения между ручным пуском и авто пуском.
56	Ручной пуск	В приложении 2, если функция активна, то инвертор запускается в ручную.
57	Автопуск	В приложении 2, если функция активна, то инвертор запускается автоматически.
58	Направление	В приложении 1 и 2, функция применяется что бы задать направление. Если функция активна, будет включен реверс, иначе инвертор будет работать вперед.
60	Истекшее время 2	Если F907>0, и получены данные , и если по истечении времени установленного F907 следующие данные не получены, на выходе будет сигнал. Сигнал будет принят терминалом, и после получения очередных данных, отсчет времени начнется заново.
61	терминал старт-стоп	Если функция не активна, то это терминал стоп. Если функция активна, то это терминал старт.

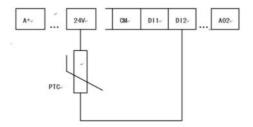


Рис. 6-6 РТС термозащита

Если переключатель находится в положении "NPN", РТС резистор должен быть подключен между терминалами CM и DIx. Если переключатель находится в положении "PNP", РТС резистор должен быть подключен между DIx и 24V. Рекомендуется резистор 16.5K.

Т.к. точность внешнего РТС не обеспечит хорошую точность защиты, рекомендуется использовать термо реле.

Таблица 6-4 Разгон/торможение

K4 K3 K2 K1

Переключение разгон /торможение 2 (34)	Переключение	Время разгона/	Связанные
	разгон /	торможения	параметры
	торможение 1 (18)		
0	0	Первое время	F114, F115
0	1	Второе время	F116, F117
1	0	Третье время	F277, F278
1	1	Четвертое время	F279, F280

Таблица 6-6 Комбинации контактов многоскоростного режима

Параметры

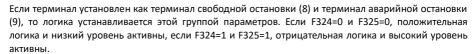
Установка частоты

'	1.4	KS	I\Z	KI	Эстановка частоты	Параметры
	0	0	0	0	-	-
	0	0	0	1	Скорость 1	F504/F519/F534/F549/F557/F565
	0	0	1	0	Скорость 2	F505/F520/F535/F550/F558/F566
	0	0	1	1	Скорость 3	F506/F521/F536/F551/F559/F567
	0	1	0	0	Скорость 4	F507/F522/F537/F552/F560/F568
	0	1	0	1	Скорость 5	F508/F523/F538/F553/F561/F569
	0	1	1	0	Скорость 6	F509/F524/F539/F554/F562/F570
	0	1	1	1	Скорость 7	F510/F525/F540/F555/F563/F571
	1	0	0	0	Скорость 8	F511/F526/F541/F556/F564/F572
	1	0	0	1	Скорость 9	F512/F527/F542/F573
	1	0	1	0	Скорость 10	F513/F528/F543/F574
	1	0	1	1	Скорость 11	F514/F529/F544/F575
	1	1	0	0	Скорость 12	F515/F530/F545/F576
	1	1	0	1	Скорость 13	F516/F531/F546/F577
	1	1	1	0	Скорость 14	F517/F532/F547/F578
	1	1	1	1	Скорость 15	F518/F533/F548/F579

Примечание: 1.

К4 управляющий контакт 4,

КЗ управляющий контакт 3,


0=Выкл, 1=Вкл.

К2 управляющий контакт 2,

К1 управляющий контакт 1.

Настройки из этой таблицы активны когда F580=0.

F324 логика терминала свободной остановки	Диапазон значений: 0: положительный (для нижнего уровня); 1: отрицательный (для верхнего уровня)	Заводское значение: 0
F325 логика терминала аварийной остановки		Заводское значение: 0
F326 Время контроля	Диапазон значений: 0.0: не активно 0.1~30000	Заводское значение: 10.0
F327 Режим остановки	Диапазон значений: 0: Свободная остановка 1: Остановка торможением	Заводское значение: 0
F328 Время реакции терминала	Диапазон значений: 1~100	Заводское значение: 20

Функции диагностики и симуляции

|--|

F330 используется для диагностики терминалов DIX. См Рис 5-12

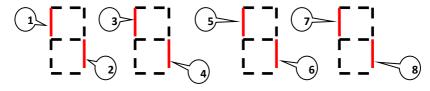


Рис. 5-12 Состояние входящих

Сплошная линия подразумевает данную часть цифры красной.

Например, в первой цифре, верхняя часть красная, это значит терминал DI1 не активный. Нижняя часть цифры красная, это значит DI2 активно. Четыре цифры показывают состояние терминалов DI1-DI8.

1. Мониторинг аналогового входа

	F331	Мониторинг AI1	Только чтение
)	F332	Мониторинг AI2	Только чтение
	F333	Мониторинг AI3	Только чтение

Отображаемое значение 0~4095.

2. Имитация релейного/цифрового выхода

)	F335	Имитация релейного выхода	Диапазон значений: 0: выход активный 1: выход не активный	Заводское значение: 0
	F336	Имитация выхода DO1		Заводское значение: 0
	F337	Имитация выхода DO2		Заводское значение: 0

Для примера возьмем имитацию выхода DO1, когда инвертор в режиме ожидания и активируем F336, нажмите клавишу UP, терминал DO1активируется. Отпустите клавишу UP, терминал DO1 останется активным. После сброса F336, DO1 вернется к первоначальному состоянию.

3. Имитация аналогового выхода

F338	Имитация выхода АО1	Диапазон значений: 0~4095	Заводское значение: 0
F339	Имитация выхода АО2	Диапазон значений: 0~4095	Заводское значение: 0

Когда инвертор в режиме ожидания, и введено F338 или F339, нажмите клавишу UP, аналоговый сигнал будет увеличен, и при нажатии клавиши DOWN, сигнал будет уменьшен. Если отпустить клавишу, то сигнал останется постоянным. После сброса параметров, AO1 и AO2 вернутся к первоначальному состоянию.

		Диапазон значений:	
		0: не активно	
		1: отрицательный DI1	
	Установка на терминале отрицательной логики	2: отрицательный DI2	
F340		4: отрицательный DI3	Заводское значение: 0
F340		8: отрицательный DI4	заводское значение. О
		16: отрицательный DI5	
		32: отрицательный DI6	
		64: отрицательный DI6	
		128: отрицательный DI8	

Например: если необходимо установить отрицательные DI1 и DI4, то необходимо задать F340=1+8=9.

6.4 Аналоговый вход и выход

Инверторы серии E2000 имеют 2 аналоговых входа и 2 аналоговых выхода. Аналоговый вход AI3 – потенциометр панели управления (опционально).

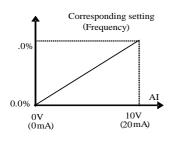
F400	Нижний предел входа Al1 (V)	Диапазон значений: 0.00~F402	Заводское значение: 0.04
F401	Нижний предел частоты вхо- да Al1	Диапазон значений: 0~F403	Заводское значение: 1.00
F402	Верхний предел входа AI1 (V)	Диапазон значений: F400~10.00	Заводское значение: 10.00
F403	Верхний предел частоты входа Al1	Диапазон значений: Max (1.00, F401) ~2.00	Заводское значение: 2.00
F404	Пропорциональность входа Al1 выходу K1	Диапазон значений: 0.0~10.0	Заводское значение: 1.0
F405	Время фильтрации AI1 (сек.)	Диапазон значений: 0.10~10.00	Заводское значение: 0.10

- В режиме аналогового управления скоростью, для достижения требуемого результата регулирования, иногда требуется корректировка соотношения между верхним (нижним) пределом входного аналогового сигнала и изменения выходной частоты.
- Верхний и нижний пределы аналогового входа задаются параметрами F400 и F402.

Например: когда F400=1, F402=8, если напряжение входа ниже 1V, система воспримет как 0. Если напряжение выше 8V, система воспримет как 10V (аналоговый вход 0-10V). Если максимальная частота F111 установлена 50Hz, частота соответствующая выходному сигналу 1-8V будет в диапазоне 0-50Hz.

• Время фильтрации устанавливается параметром F405.

При увеличении времени фильтрации - увеличивается стабильность, но снижается точность.


• Пропорциональность входа устанавливается параметром F404.

Если 1V соответствует 10Hz и F404=2, то 1V будет соответствовать 20Hz.

 Соответствующие настройки для верхнего/нижнего предела устанавливаются параметрами F401 и F403.

Если максимальная частота F111 = 50Hz, аналоговый вход 0-10V может соответствовать частоте -50Hz ... +50Hz. Если установить F401=0 и F403=2, тогда 0V соответствует -50Hz, 5V соответствует 0Hz и 10V соответствует -50Hz. Единица измерения соответствующих настроек верхнего / нижнего предела в процентах (%). Если значение более -50Hz, то отрицательное соответствие; если значение ниже -50Hz, то отрицательное соответствие. (т.е. F401=0.5 означает -50Hz).

Если направление вращения вперед задано F202, то 0-5V соответствует отрицательной частоте, что вызовет вращение в обратную сторону.

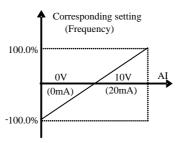
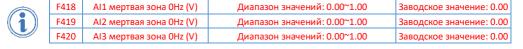


Рис. 6-13 Соответствие частоты аналоговому сигналу

Единица измерения соответствующих настроек верхнего / нижнего предела в процентах (%). Если значение более 1.00, то положительное соответствие; если значение ниже 1.00, то отрицательное соответствие (т.е. F401=0.5 означает –50%). Соответствие точке отсчета: в режиме комбинированного управления скоростью, аналоговый сигнал это дополнительная частота и заданная точка отсчета диапазона дополнительной частоты которая связана с основной "основная частота X"; соответствие точке отсчета в других случаях это "максимальная частота", как показано на рисунке справа:


A= (F401-1)* заданное значение

B= (F403-1)* заданное значение

C= F400 D= F402

F406	Нижний предел входа Al2 (V)	Диапазон значений: 0.00~F408	Заводское значение: 0.04
F407	Нижний предел частоты входа AI2	Диапазон значений: 0~F409	Заводское значение: 1.00
F408	Верхний предел входа Al2 (V)	Диапазон значений: F406~10.00	Заводское значение: 10.00
F409	Верхний предел частоты входа Al2	Диапазон значений: Мах (1.00, F407) ~2.00	Заводское значение: 2.00
F410	Пропорциональность входа Al2 выходу K2	Диапазон значений: 0.0~10.0	Заводское значение: 1.0
F411	Время фильтрации Al2 (сек)	Диапазон значений: 0.1~10.00	Заводское значение: 0.1
F412	Нижний предел входа Al3 (V)	Диапазон значений: 0.00~F414	Заводское значение: 0.05
F413	Нижний предел частоты входа Al3	Диапазон значений: 0.00~F415	Заводское значение: 1.00
F414	Верхний предел входа Al3 (V)	Диапазон значений: F412~10.00	Заводское значение: 10.00
F415	Верхний предел частоты входа Al3	Диапазон значений: Max (1.00, F413) ~2.00	Заводское значение: 2.00
F416	Пропорциональность входа Al3 выходу K1	Диапазон значений: 0.0~10.0	Заводское значение: 1.0
F417	Время фильтрации AI3 (сек)	Диапазон значений: 0.1~10.00	Заводское значение: 0.10

Функция AI2 и AI3 такая же как и AI1.

Аналоговый вход 0-5V может соответствовать частоте -50Hz-50Hz (2.5V соответствует 0Hz). Группа параметров F418, F419 и F420 задает диапазон напряжения соответствующего 0Hz. Например, если F418=0.5, F419=0.5 и F420=0.5, диапазон напряжения от (2.5-0.5=2) до (2.5+0.5=3) соответствует 0Hz. Таким образом если F418=N, F419=N и F420=N, то $2.5\pm N$ должно соответствовать 0Hz. Если напряжение будет в этом диапазоне, на выходе будет 0Hz.

Мертвая зона 0HZ будет активна, когда соответствующее значение нижнего предела меньше 1.00.

Инверторы серии Е2000 имеют 2 аналоговых выхода.

F421	Выбор клавиатуры	Диапазон значений: 0: Встроенная панель 1: Панель дистанционного управления 2:Встроенная панель + панель дистанционного управления	Заводское значение: 1
F422	Потенциометр	Диапазон значений: 0: Потенциометр на встроенной панели 1: Potentiometer in remote control panel	Заводское значение: 0

- Если F421=0, активирована встроенная панель. Если F421=1, активна панель дистанционного управления, и встроенная панель отключена.
- Параметр F422 используется для выбора потенциометра.

Если F422 = 0, активен потенциометр на встроенной панели. Если F422 = 1, активен потенциометр на панели дистанционного управления.

Если F160 = 1, то значение F422 не может быть сброшено на заводское.

Панель дистанционного управления соединяется через 8-ми жильный кабель.

F423	Диапазон выхода АО1	Диапазон значений: 0: 0~5V; 1: 0~10V или 0~20mA 2: 4~20mA	Заводское значение: 1	
F424	Наименьшая частота	Диапазон значений: 0.0~F425	Заводское значение: 0.05	
	соответствующая АО1			
F425	Наибольшая частота	Диапазон значений: F424~F111	Заводское значение: 50.00	
1423	соответствующая АО1	дианазоп эпачений. Г424 Г111	заводское значение. 30.00	
F426	компенсация АО1 (%)	Диапазон значений: 0~120	Заводское значение: 100	

- Диапазон АО1 выбирается через F423. Если F423=0, диапазон АО1 0-5V, и если F423=1, то диапазон АО1 0-10V или 0-20mA. Если F423=2, то диапазон АО1 4-20mA (для токового сигнала на АО1 переведите переключатель J5 в положение "I".)
- Соответствие напряжения (0-5V или 0-10V) частоте задается параметрами F424 и F425. Например, если F423=0, F424=10 и F425=120, то диапазон выхода AO1 0-5V и диапазон частоты 10-120Hz.
- Компенсация АО1 задается параметром F426.

		диапазон значении.	
F427	Диапазон выхода АО2	0: 0~20mA;	Заводское значение: 0
		1: 4~20 mA	
F428	Наименьшая частота соответству-	Диапазон значений: 0.0~F429	Заводское значение: 0.05
F428	ющая AO2(Hz)	диапазон значении: 0.0 1429	
F429	Наибольшая соответствующая	□	3000 5000 00000000 50 00
F429	частота AO2 (Hz)	Диапазон значений: F428~F111	Заводское значение: 50.00
F430	Компенсация АО2 (%)	Диапазон значений: 0~120	Заводское значение: 100

Лиапазон значений.

Функция AO2 такая же как AO1, но AO2 будет выводить сигнал по току, диапазон 0-20mA и 4-20mA выбирается через параметр F427.

i	F431	Выбор аналогового сигнала АО1	Диапазон значений: 0: Частота; 1: Ток на выходе; 2: Напряжение; 3: Аl1 4: Al2 5: Входящий импульс 6: Крутящий момент 7: РС/РLС 8: Заданная частота 9: Скорость 10: Крутящий момент 2	Заводское значение: 0
	F432	Выбор аналогового сигнала АО2		Заводское значение: 1

- Если выбран ток на выходе, то аналоговый сигнал будет от 0 до двукратного номинального тока.
- Если выбрано напряжение, то аналоговый сигнал будет от OV до номинального напряжения на выходе.
- Если выбрана скорость, то это действительная скорость в режиме векторного управления.
 В других режимах скорость это синхронная скорость.

F433	коэффициент для настройки внешнего вольтметра	Диапазон значений: 0.01~5.00	Заводское значение: 2.00
F434	коэффициент для настройки внешнего амперметра		Заводское значение: 2.00

- Если F431=1 и AO1 канал по току, то F433 это отношение диапазона измерения внешнего амперметра к номинальному току преобразователя.
- Если F432=1 и AO2 канал по току, то F434 это отношение диапазона измерения внешнего амперметра к номинальному току преобразователя.

Например: диапазон измерения амперметра 20A, и номинальный ток инвертора 8A, то F433=20/8=2.50.

6.5 Импульсный вход/выход

Мин. частота входящего

F440	импульса FI (KHz)	Диапазон значений: 0.00~F442	Заводское значение: 0.00
F441	Нижний предел входа FI	Диапазон значений:0.00~2.00	Заводское значение: 1.00
F442	Макс. частота входящего импульса FI (KHz)	Диапазон значений: F440~100.00	Заводское значение: 10.00
F443	Верхний предел входа FI	Диапазон значений: Мах (1.00, F441)~2.00	Заводское значение: 2.00
F445	Фильтрация FI	Диапазон значений: 0~100	Заводское значение: 0
F446	Мертвая зона ОНz входа FI (KHz)	Диапазон значений: 0~F442 (Positive-Negative)	Заводское значение: 0.00

 Мин. Частота входящего импульса устанавливается F440 и макс. частота входящего импульса устанавливается F442.

Например: если F440=0К и F442=10К, и макс. частота установлена на 50Hz, то частота входящего импульса 0-10К соответствует частоте 0-50Hz.

Время фильтрации входящего импульса устанавливается F445.

Чем больше время фильтрации, тем более стабильный входящий сигнал, но меньше точность, следует устанавливать данный параметр в зависимости от ситуации.

Соответствие минимальной частоте устанавливается F441 и соответствие максимальной частоте устанавливается F443.

Когда макс. частота установлена на 50Hz, импульсный вход 0-10К может соответствовать частоте -50Hz-50Hz задав параметры данной группы. Установите F441= 0 и F443= 2, тогда 0К соответствует -50Hz, 5К соответствует 0Hz, и 10К соответствует 50Hz. Единицей измерения соответствия макс/мин. частоте импульса является процент (%). Если значение более 1.00, то положительное соответствие; если значение менее 1.00, то отрицательное соответствие.

Если направление вращения вперед установлено F202, то 0-5K соответствует отрицательной частоте что вызовет обратное вращение.

Мертвая зона 0 Нz устанавливается параметром F446.

Входящий импульс 0-10К соответствует частоте -50Hz (5K соответствует 0Hz). Функция F446 устанавливает диапазон входящего импульса соответствующего 0Hz. Например, если F446=0.5, диапазон oт (5K-0.5K=4.5K) до (5K+0.5K=5.5K) соответствует 0Hz. Таким образом если F446=0.5N, должно соответствовать 0Hz. Если импульс будет в этом диапазоне, инвертор выдаст на выходе 0Hz.

Мертвая зона ОНZ будет активна когда соответствующие значение для нижнего порога будет менее 1.00.

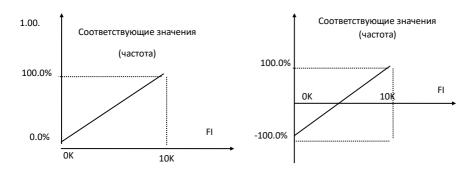
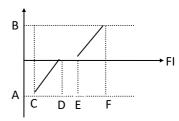



Рис. 6-15 соответствие импульса и значений

Единица измерения соответствующего значения для мин./макс частоты входящего импульса процент (%). Если значение более 1.00, то положительный; если значение менее1.00, то отрицательный. (т.е. F441=0.5 означает –50%). Соответствующее значение точки отсчета: в режиме комбинированного управления скоростью входящий импульс это дополнительная частота, и значение точки отсчета для диапазона дополнительной частоты которая схожа с основной (F205=1) есть "основная частота X"; соответствующее значение точки отсчета для остальных случаев есть "макс. частота", как показано на рисунке ниже.

A= (F441-1)* значение точки отсчета
B= (F443-1)* значение точки отсчета
C= F440 F= F442 (E-D)/2=F446

	449	F Макс. Частота выходяще- го импульса FO (KHz)	Диапазон значений: 0.00~100.00	Заводское значение: 10.00
)	450	F компенсация импульсно- го выхода (%)	Диапазон значений: 0.0~100.0	Заводское значение: 0.0
	451	F Усиление импульсного выхода	Диапазон значений: 0.00~10.00	Заводское значение: 1.00
	453	F Значение импульсного выхода	Диапазон значений: 0: Частота 1: Ток на выходе 2: Напряжение на выходе 3: Аl1 4: Al2 5: Входящий импульс 6: Крутящий момент 7: Значение заданное PC/PLC 8: Заданная частота	Заводское значение: 0

 Если DO1 задан как высокоскоростной выходной импульсный терминал, то макс. частота выходящего импульса устанавливается параметром F449.

Если "b" коэффициент нулевого смещения, "k" усиление, "Y" фактическая частота выходящего импульса и "x" стандартный выход, то Y=Kx+b.

- Стандартный выход х это значение, соответствующее мин/макс частоте выходящего импульса, диапазон которого от нуля до макс. значения.
- 100 % от коэффициента нулевого смещения соответствует максимальной частоте выходящего импульса (значение параметра F449.)
- Усиление частоты импульсного выхода задается параметром F451. Пользователь может установить его, чтобы компенсировать отклонение выходного импульса.
- Значение импульсного выхода задается параметром F453. Например: частота, ток и напряжение на выходе и т.д.
- Если выбран ток, то диапазон значений от 0 до двойного номинального тока.
- Если выбрано напряжение, диапазон значений от 0 до 1.2 номинального напряжения.

F460	AI1 режим входа	Диапазон значений: 0: прямолинейный режим 1:ступенчатый режим	Заводское значение: 0
F461	AI2 режим входа	Диапазон значений: 0: прямолинейный режим 1:ступенчатый режим	Заводское значение: 0

F462	AI1 точка A1 напряжение (V)	Диапазон значений: F400~F464	Заводское значение: 2.00
F463	AI1 точка A1 значение	Диапазон значений: F401~F465	Заводское значение: 1.20
F464	AI1 точка A2 напряжение (V)	Диапазон значений: F462~F466	Заводское значение: 5.00
F465	AI1 точка A2 значение	Диапазон значений: F463~F467	Заводское значение: 1.50
F466	AI1 точка А3 напряжение (V)	Диапазон значений: F464~F402	Заводское значение: 8.00
F467	AI1 точка A3 значение	Диапазон значений: F465~F403	Заводское значение: 1.80
F468	AI2 точка B1 напряжение (V)	Диапазон значений: F406~F470	Заводское значение: 2.00
F469	AI2 точка B1 значение	Диапазон значений: F407~F471	Заводское значение: 1.20
F470	AI2 точка B2 напряжение (V)	Диапазон значений: F468~F472	Заводское значение: 5.00
F471	AI2 точка B2 значение	Диапазон значений: F469~F473	Заводское значение: 1.50
F472	AI2 точка ВЗ напряжение (V)	Диапазон значений: F470~F412	Заводское значение: 8.00
F473	AI2 точка B3 значение	Диапазон значений: F471~F413	Заводское значение: 1.80

Если выбран прямолинейный режим аналогового канала задайте это в соответствии с параметрами от F400 до F429. Если выбран ступенчатый режим, в прямую вставлены три точки A1(B1), A2(B2), A3(B3), каждая из которых может установить частоту в зависимости от входящего напряжения. См. рис 6-17:

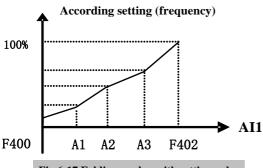


Fig 6-17 Folding analog with setting value

F400 и F402 есть нижний/верхний порог аналогового входа Al1. Если F460=1, F462=2.00V, F463=1.4, F111=50, F203=1, F207=0, то точка Al соответствует частоте (F463-1) *F111=20Hz, это значит 2.00V соответствует 20Hz. Другие точки задаются таким же способом.

Канал AI2 настраивается точно так же, как AI1.

6.6 Многоскоростной режим управления

Многоскоростной режим управления равнозначен встроенному PLC. Данная функции может устанавливать время работы, направление вращения, и частоту.

В инверторах серии Е2000 могут быть реализованы 15 предустановленных скоростей и 8-ми скоростная цикличность.

В процессе контроля скорости по каналу обратной связи, многоступенчатое регулирование скорости

		Диапазон значений:	
F500	Тип управления	0: 3- х скоростной;	Заводское значение: 1
F300	тип управления	1: 15-ти скоростной;	Заводское значение. 1
		2: цикличность	

В случае многоскоростного управления (F203=4), необходимо выбрать режим F500. Если F500=0, выбран 3-х скоростной режим. Если F500=1, выбран 15-ти скоростной режим. Если F500=2, выбран режим цикличности. Если F500=2, то F501 позволяет задать "2-х скоростной", "3-х скоростной", ... "8-ми скоростной" режим цикличности.

Таблица 6-7 Выбор типа управления

F203	F500	Режим	Описание
4	0	3- х скоростной	Приоритет: 1-я скорость, 2-я скорость и 3-я скорость. Трех- скоростной режим может быть объединен с аналоговым управлением скоростью. Если F207=4, то трехскоростной режим имеет приоритет перед аналоговым управлением.
4	1	15- ти скоростной	15-ти скоростной режим может быть объединен с аналоговым управлением скоростью Если F207=4, то 15-ти скоростной режим имеет приоритет перед аналоговым управлением.
4	2	цикличность	Ручная регулировка частоты невозможна.

F501	Выбор количества скоростей в режиме цикличности	Диапазон значений: 2~8	Заводское значение: 7
F502	Количество циклов	Диапазон значений: 0~9999 (если значение установлено на 0, то совершит бесконечное количество циклов)	Заводское значение: 0
F503	Состояние после отработки заданного количества циклов	Диапазон значений: 0: Стоп 1: Работа на последней скорости	Заводское значение: 0

- При цикличном режиме (F203=4 and F500=2), установите связанные параметры F501∼F503.
- Одним циклом является однократное повторение последовательности заданных скоростей
- Если F502=0, инвертор будет выполнять бесконечное количество циклов, и будет остановлен сигналом "стоп".
- Если F502>0, то отработав заданное количество циклов, циклический режим выключится. Если заданное количество циклов не отработано, и инвертор получит команду "стоп", то инвертор остановится. Если инвертор получит команду "пуск" снова, то инвертор начнет отрабатывать заданное количество циклов F502.

- Если F503=0, то инвертор, отработав заданное количество циклов остановится. Если F503=1, то инвертор будет работать на последней скорости пока не получит команду стоп.
- т.е., F501=3, инвертор будет работать в 3-х скоростном режиме;

F502=100, инвертор отработает 100 автоматических циклов;

F503=1, отработав заданное количество циклов инвертор будет работать на последней скорости.

Figure 6-18 Auto-circulating Running

Затем инвертор может быть остановлен нажатием клавиши "стоп" или сигналом "stop" через терминал управления.

F504	Частота для скорости 1 (Hz)		Заводское значение: 5.00
F505	Частота для скорости 2 (Hz)		Заводское значение: 10.00
F506	Частота для скорости 3 (Hz)		Заводское значение: 15.00
F507	Частота для скорости 4 (Hz)		Заводское значение: 20.00
F508	Частота для скорости 5 (Hz)		Заводское значение: 25.00
F509	Частота для скорости 6 (Hz)		Заводское значение: 30.00
F510	Частота для скорости 7 (Hz)		Заводское значение: 35.00
F511	Частота для скорости 8 (Hz)	Диапазон значений: F112∼F111	Заводское значение: 40.00
F512	Частота для скорости 9 (Hz)	/	Заводское значение: 5.00
F513	Частота для скорости 10 (Hz)		Заводское значение: 10.00
F514	Частота для скорости 11 (Hz)		Заводское значение: 15.00
F515	Частота для скорости 12 (Hz)		Заводское значение: 20.00
F516	Частота для скорости 13 (Hz)		Заводское значение: 25.00
F517	Частота для скорости 14 (Hz)		Заводское значение: 30.00
F518	Частота для скорости 15 (Hz)		Заводское значение: 35.00
F519~ F533	Время разгона с 1 по 15	Диапазон значений:	Индивидуально для каждой
	скорости (Сек.)	0.1~3000	модели
F534~ F548	Время торможения с 1 по 15	Диапазон значений:	
	скорости (Сек.)	0.1~3000	
F549~	Направление вращения с 1	Диапазон значений:	
F556	по 8 скорости	0: вперед;	Заводское значение: 0
		1: реверс	
F573~	Направление вращения с 9	Диапазон значений:	
F579	по 15 скорости	0: вперед;	Заводское значение: 0
		1: реверс	

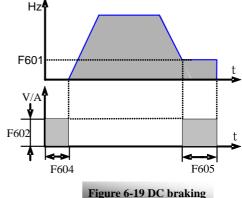
F557~ 564	Время работы с 1 по 8 скорости (Сек.)	Диапазон значений: 0.1~3000	Заводское значение: 1.0
F565~ F572	Время переключения с 1 по 8 скорости (Сек.)	Диапазон значений: 0.0~3000	Заводское значение: 0.0
F580	Режим скорости	Диапазон значений: 0: Режим 1 1: Режим 2	Заводское значение: 0

Если F580=0, 0000 означает выкл., 0001 означает первую скорость, 1111 означает 15^{-10} скорость.

Если F580=1, 0000 означает первую скорость, 0001 означает вторую скорость, и т.д. 1111 означает выкл.

6.7 Вспомогательные функции

	Диапазон значений:	
	0: выкл.;	
F600 Bullion DC Tonyourg	1: торможение перед стартом;	2220 25/00 21/21/01/40/ 0
F600 Выбор DC торможения	2: торможение во время остановки;	Заводское значение: 0
	3: торможение во время старта и остановки	
F601 Частота торможения (Hz)	Диапазон значений: 0.20~50.00	Заводское значение: 1.00
F602 Эффективность торможения перед стартом	Диапазон значений: 0~100	Заводское значение: 10
F603 Эффективность торможения во время остановки	дианазон значении. О 100	
F604 Время Braking Lasting Time Before Starting (S)	Диапазон значений: 0.0∼10.00	Заводское значение: 0.50
F605 ????????		
F606 ????????		


Если F600=0, функция DC торможения выключена.

- Если F600=1, то включено торможение перед стартом. После получения сигнала пуск, инвертор начинает торможение. После завершения торможения, инвертор запустится с начальной частоты.
- В некоторых случаях (например вентилятор) немедленный запуск инвертора при вращение на малой скорости или вращении в обратную сторону, может привести к перегрузке и ошибке ОС. Задав функцию торможения перед стартом, обеспечивается неподвижность вентилятора перед стартом, чтобы избежать этой ошибки.
- Если во время торможения перед стартом дана команда "стоп", инвертор остановится в обычном режиме.

Если F600=2, то включено торможение во время остановки. После того как частота станет ниже начальной частоты для DC торможения (F601), DC торможение остановит мотор немедленно.

Если в процессе торможения во время остановки будет задана команда пуск, то торможение будет закончено и инвертор запустится.

Если в процессе торможения во время остановки будет задана команда стоп, то инвертор не будет реагировать и процесс торможения во время остановки будет продолжен.

- Если функция толчка активна, то торможение перед стартом F600 активно, и функция контроля скорости неактивна
- Если функция толчка активна и F613=1, то торможение перед стартом не активно.

Параметры связанные с "DC тормозом": F601, F602, F603, F604, F605:

- F601: начальная частота торможения. DC торможение начнется если частота будет ниже этого значения.
- b. F602/F603: Эффективность торможения (единица измерения процент от номинального тока). Большее значение приведет к быстрому торможению. Однако, при слишком большом значении мотор перегреется.
- с. F604: Продолжительность торможения перед стартом.
- d. F605: Продолжительность торможения во время остановки.

Примечание: Так как двигатель не имеет собственной системы охлаждения, то при DC торможении он может перегреваться. Не устанавливайте слишком высокое напряжение торможения и слишком долгое время торможения.

См. Рис. 6-19

		Диапазон значений:	
		0~2: Зарезервировано	
F607	Выбор функции ограничения	3: ограничение напряжение/ток	Заводское значение: 3
		4: Ограничение напряжения	
		5: Ограничение тока	
F608	Ограничение тока (%)	Диапазон значений: 60~200	Заводское значение: 160
			Заводское значение:
F609	Ограничение напряжения (%)	Диапазон значений: 110~200	1-phase: 130
			3-phase: 140

Начальное значение ограничения тока задается параметром F608, когда ток выше чем номинальный ток*F608, то функция ограничения тока активна.

Во время разгона, если ток выше чем начальное значение ограничения тока, инвертор не будет

разгонятся, пока ток не станет ниже начального значения ограничения тока.

В случае остановки во время работы со стабильной скоростью, частота буде снижена.

F607 используется для выбора функции ограничения.

Ограничение напряжения: когда мотор останавливается быстро или нагрузка резко меняется, DC шина будет под высоким напряжением. Функция ограничения напряжения позволяет установить время торможения и частоту, чтобы избежать ошибки OE.

Если используется тормозной резистор или тормозной модуль, не используйте функцию ограничения напряжения. В противном случае время торможения будет изменено.

Ограничение тока: когда мотор разгоняется быстро или нагрузка резко меняется, инвертор может уйти в ОС. Функция ограничения тока позволяет установить время разгона/торможения или уменьшить частоту для контроля значения тока. Это активно только в режиме VF управления.

Примечание: (1) Ограничение напряжения/тока не подходит для грузоподъемных операций.

(2) Эта функция изменит время разгона/торможения. Используйте эту функцию аккуратно. Значение ограничения тока устанавливается параметром F608, когда ток выше чем номинальный ток*F608, функция ограничения тока активна.

Значение ограничения напряжения устанавливается параметром F609.

F611	Динамический порог торможения	Диапазон значений: 200~2000	Зависит от модели инвертора
F612	Коэффициент заполнения динамического торможения (%)	Диапазон значений: 0~100	Заводское значение: 100

Напряжение динамического порога торможения устанавливается параметром F611. Когда напряжение на DC шине выше чем заданное значение этой функции, начнется динамическое торможение, тормозной модуль начинает работать. После того как напряжение на DC шине станет меньше чем заданное значение этой функции, тормозной модуль перестанет работать.

Значение параметра F611 должно быть установлено в соответствии с входящим напряжением. Если входящее напряжение 400V, то F611 должно быть установлено на 700V, если входящее напряжение 460V, F611 должно быть установлено на 770V. Чем ниже динамический порог торможения, тем эффективнее торможение. Но в таком случае тормозной резистор будет сильно греться. Чем выше динамический порог торможения, тем хуже торможение. И во время торможения инвертор может уйти в ОЕ.

Коэффициент заполнения динамического торможения задается параметром F612, диапазон значений $0^{\sim}100\%$. Чем больше значение, тем торможение лучше, но тормозной резистор греется сильнее.

Если F613=0, функция подхвата налету неактивна.

Если F613=1, функция подхвата налету активна.

После того, как преобразователь отследит частоту вращения двигателя и направление вращения, преобразователь начнет плавно вращть двигатель.

Эта функция используется в случае автостарта после отключения питания, автостарта после сброса ошибки, автостарта после потери управляющего сигнала при наличии команды RUN и автостарта в случае отсутствия команды RUN.

Если F613=2, данная функция активна после отключения и повторного включения питания инвертора.

Прим.: Если F106=0 или 6, функция подхвата налету неактивна.

Режим F614 подхвата налету

Диапазон значений:

- 0: Подхват налету с поиском с запомненной частоты
- 1: Подхват налету с поиском с нуля.
- 2: Подхват налету с поиском с максимальной частоты

Заводское значение: 0

Заволское знапение. О

Если F614 = 0, инвертор будет снижать частоту с запомненной частоты.

Если F614 = 1, инвертор будет повышать частоту с 0Hz.

Если F614 = 2, инвертор будет снижать частоту с максимальной частоты.

F615 Скорость поиска Диапазон значений: $1{\sim}100$ Заводское значение: 20	F615	Скорость поиска	Диапазон значений: $1{\sim}100$	Заводское значение: 20
---	------	-----------------	---------------------------------	------------------------

Данный параметр используется для изменения скорости поиска частоты при активировании функции подхвата налету. Увеличение параметра увеличивает скорость поиска. Слишком высокое значение приводит к нестабильности.

N	F641	Ингибирование колебаний тока	0: не активно	Зависит от модели инвертора
"		при низкой частоте	1: активно	зависи ст подели инвертора

Если F641=0, то функция ингибирования активна.

Если в режиме V/F функция ингибирования активна, то должны быть установлены следующие параметры:

F106=2 (V/F режим) и F137≤2;

F613=0, подхват налету неактивен

Примечание

- 1. Если F641=1, то один инвертор может управлять только одним мотором одновременно.
- 2. Если F641=1, установите параметры мотора правильно (F801~F805, F844).
- 3. Если функция ингибирования активна, и инвертор работает без мотора, напряжение на выходе может быть несбалансированным. Это нормальная ситуация. После того как инвертор заработает с мотором, напряжение на выходе станет сбалансированным.

Пиапаэон энэнений:

		дианазон значении.	заводское значение. о
F657	Мгновенная потеря питания	0: не активно	
		1: активно	
F658	Время увеличения	Диапазон значений: 0.0~3000	Заводское значение: 0.0
1050	напряжения (Сек.)	0.0: F114	
F659	Время снижения напряжения (Сек)	Диапазон значений: 0.0~3000	Заводское значение: 0.0
1033		0.0: F115	
F660	верхний порог падения	Диапазон значений:	Зависит от модели инвертора
1000	напряжения (V)	200~F661	тивертора
F661	Нижний порог падения	Диапазон значений:	Зависит от модели инвертора
L001	напряжения (V)	F660~1300	ипьертора

При пропадании питания или внезапном провале напряжения, напряжение на DC шине снижается. Функция позволяет инвертору компенсировать потерю напряжения на DC шине с обратной энергией нагрузки путем понижения частоты на выходе, чтобы сохранить непрерывную работу инвертора.

- Данная функция подходит для нагрузок с большой инерцией, таких как вентиляторы и центробежные насосы.
- Данная функция не подходит в тех случаях, когда запрещено понижение частоты.
- Когда напряжение на шине станет нормальным, и параметры F658/F659 применяются для установки времени разгона/торможения, то инвертор выходит на заданную частоту.
- Когда функция активна, и если PN напряжение ниже чем F660, то функция начинает работать.
- Когда инвертор в состоянии мгновенной потери питания, и если PN напряжение выше чем F661, то напряжение на шине остается нормальным, инвертор будет работать нормально на заданной частоте.

			диапазон значении:	
		0: F672		
		1: Al1		
	F671 источник напряжения для V F разделения		2:AI2	
		источник напряжения для V/ F разделения	3: AI3	Заводское значение: 0
		is a set too.	4: настройка связи	
		5: настройка импульсом		
		6: PID		
		7~10: зарезервировано		
	F672	Цифровая настройка напряжения для V/F	Диапазон значений: 0.00~100.00	Заводское значение: 100.0

F671 это 100% настройки соответствующей номинальному напряжению мотора.

- 0: цифровая настройка, напряжение на выходе установленное параметром F672.
- 1: AI1; 2:AI2; 3: AI3;
- Напряжение на выходе установленное аналоговым сигналом.
- 4: Настройка связи

Напряжение на выходе устанавливается через PC/PLC, адрес 2009H, заданный диапазон $0^{\sim}10000$, что означает $0^{\sim}100\%$ номинального напряжения.

5 настройка импульсом

Напряжение на выходе задается высокоскоростным импульсом. Частота импульса соответствует номинальному напряжению мотора.

6: PID

Т Напряжение на выходе устанавливается PID. PID регулирование соответствует 100% от номинального напряжения мотора. Более подробно см. группу параметров PID регулирования.

F67:	Нижний предел 3 напряжения V/F разделения (%)	Диапазон значений: 0.00~F674	Заводское значение: 0.00
F67	4	Диапазон значений: F673~100.00	Заводское значение: 100.00

Если напряжение ниже чем F673, то напряжение должно выровняться до F673. Если напряжение более чем F674, то напряжение должно выровняться до F674.

F675	Время повышения напряжения V/F разделения (Сек)	Диапазон значений: 0.0∼3000.0	Заводское значение: 5.0
F676	время понижения напряжения V/F разделения (Сек)	Диапазон значений: 0.0∼3000.0	Заводское значение: 5.0

F675 это время требуемое для повышения напряжения от 0V до номинального напряжения мотора. F676 это время требуемое для понижения напряжения от номинального напряжения мотора до 0V.

F677	Режим остановки при V/F разделении	Диапазон значений: 0: Понижение напряжения и частоты до 0 согласно соответствующего времени. 1: Понижение напряжения до 0 первым 2: Понижение частоты до 0 первым.	Заводское значение: 0
------	---------------------------------------	---	-----------------------

- Если F677 = 0, напряжение и частота понижаются до 0 согласно соответствующего времени, инвертор остановится когда частота достигнет 0.
- Если F677 = 1, напряжение понижается до 0 первым. После того как напряжение станет 0, частота будет понижена до 0.
- Если F677 = 2, частота понижается до 0 первойт. После того как частота станет 0, напряжение будет понижено до 0.

6.8. Неисправности и защита

		Диапазон значений:	
F700	Выбор типа остановки	0: свободный выбег;	Заводское значение: 0
		1: задержка свободной остановки	
F701	Время задержки свободной остановки	Диапазон значений: 0.0~60.0Сек	Заводское значение: 0.0

 Параметр F700 актуален, когда команду свободной остановки дает терминал управления (F201=1, 2, 4.)

Если выбран "свободный выбег", то время задержки (F701) будет отключено, и инвертор остановится немедленно.

 "Задержка свободной остановки" означает, что при получении сигнала свободной остановки, инвертор выполнит команду свободной остановки после ожидания определенного времени.
 Время задержки устанавливается параметром F701. Если активна функция подхвата налету, то функция задержки свободной остановки неактивна.

		0: Контроль температуры	
F702	Режим работы вентилятора	1: Включен когда инвертор включен.	Заводское значение: 2
		2: Комбинированное управление	

Если F702=0,то вентилятор включится если температура радиатора выше 35°C.

Если F702=2, вентилятор включится когда инвертор будет запущен. Когда инвертор остановится, вентилятор остановится после того как температура радиатора будет менее 40°C.

F704	Предварительная тревога перегрузки инвертора(%)	Диапазон значений: 50~100	Заводское значение: 80
F705	Предварительная тревога перегрузки мотора(%)	Диапазон значений: 50~100	Заводское значение: 80
F706	Коэффициент перегрузки инвертора (%)	Диапазон значений: 120~190	Заводское значение: 150
F707	Коэффициент перегрузки мотора (%)	Диапазон значений: 20~100	Заводское значение: 100

- Коэффициент перегрузки инвертора: отношение тока защиты к номинальному току, это значение будет зависеть от нагрузки.
- Коэффициент перегрузки мотора (F707): когда инвертор управляет электродвигателем меньшей мощности, необходимо вычислить и запрограммировать новое значение данного параметра по формуле:

Коэффициент перегрузки мотора =
$$\frac{\text{Actual motor}}{\text{Matching motor}} \times 100\%$$
 .

Установите параметр F707 в соответствии с ситуацией. Более низкое установленное значение F707 соответствует более быстрому срабатыванию защиты от перегрузки. См. Рис. 6-20.

Например: инвертор 7.5kW управляет мотором 5.5kW , F707 $\frac{5.5}{7.5} = \times 100 \% \approx 70 \%$. Когда актуальное значение тока мотора достигнет 140% от тока преобразователя, сигнализация об ошибке сработает через 1 мин.

Когда выходная частота ниже 10 Гц, охлаждение двигателя будет хуже. Поэтому, когда рабочая частота ниже 10Гц, будет снижен порог перегрузки двигателя. Пожалуйста, обратитесь к рис. 6-21 (F707 = 100%):

Fig 6-21 Motor overload protection value

120%140%160%180%200%

		Диапазон значений:	
F708	Последняя ошибка	См. Приложение 1.	
F709	Предпоследняя ошибка		
F710	Пред предпоследняя ошибка		
F711	Частота последней ошибки (Hz)		
F712	Ток последней ошибки (А)		
F713	Напряжение последней ошибки (V)		
F714	Частота предпоследней ошибки (Hz)		
F715	Ток предпоследней ошибки(А)		
F716	Напряжение предпоследней ошибки (V)		
F717	Частота пред предпоследней ошибки (Hz)		
F718	Ток пред предпоследней ошибки (А)		
F719	Напряжение пред предпоследней ошибки (V)		
F720	Количество ошибок повышенного тока		
F721	Количество ошибок повышенного напряжения		
F722	Количество перегревов		
F723	Количество перегрузок		
F724	Контроль пропадания фазы питания	Диапазон значений:	Заводское значение: 1
F726	Контроль перегрева	Диапазон значений:	Заводское значение: 1
F727	Контроль пропадания фазы на выходе	Диапазон значений:	Заводское значение: 1
F728	Фильтрация пропадания фазы питания (сек)	Диапазон значений: 1~60	Заводское значение: 5
F729	Фильтрация повышенного напряжения (2mS)	Диапазон значений: 1~3000	Заводское значение: 5
F730	Фильтрация защиты от перегрева (сек)	Диапазон значений: 0.1~60.0	Заводское значение: 5.0

 Фильтрация "Повышенного напряжения" / "пропадания фазы" используется для предотвращения от ложного срабатывания защиты. Чем больше значение, тем дольше фильтрация и лучше эффект фильтрации.

F737	Защита повышенного тока 1	Диапазон значений: 0: выкл 1: вкл.	Заводское значение: 1
F738	Коэффициент защиты повы-	Диапазон значений: 0.50~3.00	Заводское значение: 2.5
F739	Запись Защиты повышенного тока1		

- F738= OC 1 значение/номинальный ток инвертора
- В режиме работы, F738 невозможно изменить. Когда происходит повышенный ток, то отображается ОС1.

		диапазон значении:		
F741		0: Неактивно		
	E7/11	Защита отсутствия аналогового сигнала	1: Стоп и отображается Aerr.	Заводское значение: 0
	F/41		2: Стоп и Aerr не отображается.	заводское значение. о
		3: Инвертор работает на мин. частоте.		
			4: Зарезервировано.	
	F742	Порог защиты аналогового сигнала (%)	Диапазон значений: 1~100	Заводское значение: 50

Когда значения F400 и F406 ниже чем 0.10V, защита аналогового разъединения не активна. Аналоговый канал AI3 не имеет защиты аналогового разъединения.

Когда F741 установлено на 1, 2 или 3, значения F400 и F406 должны быть установлены на 1V-2V, чтобы избежать защиты ошибок от помех.

Напряжение защиты аналогового разъединения = нижний предел аналогового входа* F742. Для примера возъмем канал Al1, если F400=1.00, F742=50, защита разъединения сработает при напряжении на Al1 менее 0.5V.

	F745	Порог сигнализации перегрева (%)	Диапазон значений: 0~100	Заводское значение: 80	
F747		Автоматическая регулировка несущей частоты	Диапазон значений:		
	F747		0: выкл.	Заводское значение: 1	
			1: вкл.		

Когда температура радиатора достигнет значения 90² * F745 и многофункциональный выходящий терминал установлен на 16 (см. $F300 \sim F302$), то будет отображено состояние перегрева.

Если F747=1, и температура радиатора достигает определенного значения, инвертор отрегулирует несущую частоту автоматически, чтобы снизить температуру. Эта функция предотвращает перегрев.

Если F159=1, и выбрана случайная несущая частота, то F747 не активна.

Если F106=6, F747 не активна постоянно.

F752	Коэффициент сброса перегрузки	Диапазон значений: 0.1~20.0	Заводское значение: 1.0
		Диапазон значений:	
F753	Выбор защиты перегрузки	0: Обычный мотор	Заводское значение: 1
		1: Мотор с переменной частотой	

- Чем больше значение параметра F752, тем меньше совокупное время укороченной нагрузки.
- Если F753=0, то электронная защита от перегрева будет отрегулирована должным образом (так как охлаждение на малых оборотах недостаточное). Это значит, что порог защиты перегрузки будет уменьшен когда частота будет ниже 30Hz.
- Если F753=1, значение защиты не будет изменено в связи с хорошим охлаждением данного типа двигателей при любых оборотах.

F75	1 Порог нулевого тока (%)	Диапазон значений: 0~200	Заводское значение: 5
F75	Б Продолжительность нулевого тока (Сек.)	Диапазон значений: 0~60	Заводское значение: 0.5

Когда ток на выходе падает до нулевого порога, и по истечении времени нулевого тока, на выходе будет сигнал Вкл.

F760	Защита заземления	Диапазон значений: 0: выкл. 1: вкл.	Заводское значение: 1
------	-------------------	-------------------------------------	-----------------------

Если терминалы (U, V, W) подключены к земле или сопротивление заземления слишком малое, то при наличии тока утечки инвертор уйдет в защиту GP. Когда защита включена, на выходах U, V, W на некоторое время появится напряжение после включения питания.

Примечание: однофазные инверторы не имеют защиты заземления GP.

		Диапазон значений:	
F761	Режим переключения Вперед/ Реверс	0: на нуле	Заводское значение: 0
		2: на частоте пуска	

- Если F761 = 0, то переключение Вперед/Реверс на нулевой частоте, F120 вкл.
- Если F761 = 1 то переключение Вперед/Реверс на стартовой частоте, F120 выкл, и если стартовая частота слишком высокая, то будет сильный скачек тока во время процесса переключения.

6.9. Параметры электродвигателя

		Диапазон значений:	
F800		0: Выкл.;	Заводское значение: 0
FOUU	Настройка параметров	1: Динамическая настройка;	заводское значение. О
		2: Статическая настройка	
F801	Мощность (kW)	Диапазон значений: 0.1~1000.0	
F802	Напряжение (V)	Диапазон значений: 1~1300	
F803	Ток (А)	Диапазон значений: 0.2~6553.5	
F804	Число полюсов	Диапазон значений: 2~100	4
F805	Скорость вращения (об/мин)	Диапазон значений: 1~30000	
F810	Частота (Hz)	Диапазон значений: 1.00~650.00	50.00

- Установите параметры в соответствии с указанными на шильдике мотора.
- Для лучшей производительности векторного управления требуются точные параметры двигателя. Точная настройка параметров требует установки правильных номинальных параметров двигателя.
- Чтобы получить лучшую производительность, подбирайте мотор соответствующий инвертору. В случае если будет большая разница в мощности двигателя и инвертора, характеристики инвертора будут значительно занижены.
- F800=0, настройка парамстров выкл. Но все равно необходимо задать правильные параметры F801~F803, F805 и F810 в соответствии с шильдиком мотора.

После включения питания, будут использоваться параметры по умолчанию (см. значения F806-F809) в соответствии с мощностью мотора заданной в F801. Это значение справочное, взятое для 4-х полюсного асинхронного мотора. Для PMSM, введите параметры F870~F873 в ручную.

F800=1, динамическая настройка.

Для того, чтобы обеспечить динамические характеристики управления преобразователем, выберите "динамическую настройку". После того, как убедитесь, что мотор отключен от нагрузки. Установите F801-805 и F810 правильно до запуска тестирования. Если выбран векторный режим управления с обратной связью, установите F851 правильно.

Процесс динамической настройки: Нажмите клавишу "Run", отобразится "TEST", и начнется настройка параметров мотора в два этапа. Мотор разгонится в соответствии с временем разгона установленного F114. Мотор остановится в соответствии с временем торможения установленного F115. После завершения авто-сканирования, соответствующие параметры асинхронного двигателя будут сохранены в F806~F809. А соответствующие параметры PMSM будут сохранены в F870~F873. F800 будет установлено на 0 автоматически.

·F800=2, статическая настройка.

Подходит когда отключение мотора от нагрузки невозможно.

Нажмите клавишу "Run", отобразится "TEST", и начнется настройка параметров мотора в два этапа. Сопротивление статора, сопротивление ротора и индуктивность будут сохранены в F806-F809 автоматически. Для PMSM, параметры сохранятся в F870∼F873. F870 - это расчетное значение, точное значение ЭДС пользователь может запросить у производителя электродвигателя. F800 будет установлено на 0 автоматически. Пользователь может рассчитать и ввести значение индуктивности вручную.

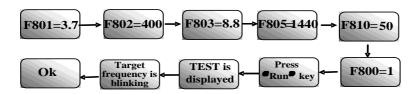
Во время настройки мотор не вращается но находится под напряжением. Не дотрагивайтесь до мотора во время этого процесса.

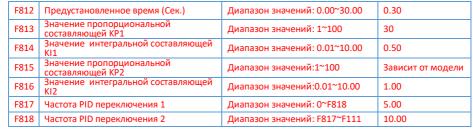
*Примечание:

- 1. Не имеет значение какой метод настройки используется, установите правильную информацию о моторе (F801-F805) указанную на шильдике мотора. Если оператор достаточно хорошо знает мотор, то оператор может ввести параметры (F806-F809) вручную.
- 2. Параметр F804 может быть только проверен, и не может быть изменен.
- 3. Неправильные параметры мотора могут привести к нестабильной работе или отказу двигателя. Правильная настройка параметров гарантирует правильную работу векторного управления.

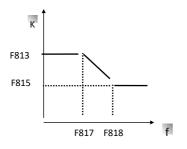
Каждый раз, когда меняется мощность мотора F801, параметры мотора (F806-F809) будут сброшены на значения по умолчанию автоматически. Поэтому будьте осторожны когда меняете этот параметр.

F806	Сопротивление статора (Ω)	Диапазон значений: 0.001~65.53Ω (до 15kw)	Зависит от модели
F807	Сопротивление ротора (Ω)	Диапазон значений: 0.001~65.53Ω (до 15kw)	
F808	Индуктивность утечки (mH)	Диапазон значений: 0.01~655.3mH (до 15kw)	
F809	Взаимная индуктивность (mH)	Диапазон значений: 0.1~6553mH (до15kw)	
F844	Ток без нагрузки (А)	Диапазон значений: 0.1~F803	


- Значения параметров F806 ~ F809 будут обновлены автоматически после завершения настройки параметров мотора.
- Если нет возможности измерить параметра мотора, введите параметры в ручную взяв известные параметры похожего мотора.


Параметр F844 может быть получен автоматически при динамической настройке.

Если ток без нагрузки выше, чем когда мотор работает, уменьшите значение F844.


Если рабочий ток или стартовый ток выше чем когда мотор работает под нагрузкой, увеличьте значение F844.

Для примера возьмем инвертор 3.7kW: параметры 3.7kW, 400V, 8.8A, 1440rpm, 50Hz, и нагрузка отключена. Если F800=1, выполняются следующие шаги:

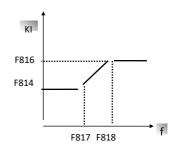


Рис. 6-22 параметр PID

Динамическую характеристику скорости векторного управления можно регулировать путем корректировки пропорциональной и интегральной составляющих контура скорости. Увеличение КР и уменьшение КІ может ускорить динамический отклик контура скорости. Тем не менее, слишком высокие значения коэффициента пропорциональности или интегральной составляющей могут привести к возникновению колебаний.

Рекомендуемые действия:

Если заводские настройки данных коэффициентов не удовлетворяют потребностям практического применения, то произведите более точную подстройку заводских значений. Будьте осторожны, шаг изменений не должна быть слишком большой.

В случае слабой грузоподъемности или медленном разгоне уменьшите сначала значение КР при отсутствии предпосылок к скачкам. Если работа стабильная, то увеличьте значение КІ, чтобы увеличить скорость реакции.

В случае скачков тока или скорости вращения уменьшите КР и увеличте КІ.

Примечание: Неправильная установка КР и КІ может привести к резким скачкам системы или к отказу оборудования. Устанавливайте эти параметры осторожно.

F819	Коэффициент скольжения	Диапазон значений: 50~200	Заводское значение: 100
F820	Коэффициент фильтрации обратной связи	Диапазон значений: 0~100	Заводское значение: 0

F819 применяется для регулировки точности постоянной скорости при векторном управлении.

В режиме векторного управления, если скорость колебаний слишком высокая или инвертор останавливается нестабильно, пожалуйста, увеличьте значение F820 должным образом; это будет влиять на скорость реакции контура скорости.

F851 Разрешение энкодера Диапазон значений: 1~9999 Заводское значение: 3	.000	
--	------	--

Примечание: Если F106=1, то должна быть установлена плата PG, и установлено разрешение энкодера.

F854 Последовательность фаз энкодера	Диапазон значений: 0: вперед 1: назад	Заводское значение: 0
--------------------------------------	---	-----------------------

F854 применяется для установки последовательности фаз дифференциального и инкрементального ABZ энкодеров. В режиме векторного управления с обратной связью, правильная последовательность может быть получена во время динамической настройки.

Если параметры мотора могут быть определены динамической настройкой, установите F854 проверив значение H015.

Например, инвертор работает более 5сек в режиме V/F, затем инвертор останавливается, проверьте значение H015. Если H015=0, то не меняйте значение F854. Если H015=1, то измените значение F854.

1	•	1
((Ť	-))
1	╚	IJ
	_	

F870	электродвижущая сила PMSM (mV/rpm)	Диапазон значений: 0.1~999.9 (значение между линиями)	Заводское значение: 100.0
F871	PMSM D-аксиальная индукция (mH)	Диапазон значений: 0.01~655.30	Заводское значение: 5.00
F872	PMSM Q-аксиальная индукция (mH)	Диапазон значений: 0.01~655.30	Заводское значение: 7.00
F873	Сопротивление статора PMSM (Ω)	Диапазон значений: 0.001~65.530 (phase resistor)	Заводское значение: 0.500

- F870(электродвижущая сила PMSM, ед. = 0.1mV/1rpm, это электродвижущая сила между линиями), запрещен сброс к заводскому значению через F160.
- F871(PMSM D- аксиальная индукция, ед. = 0.01 mH), запрещен сброс к заводскому значению через F160.
- F872(PMSM Q- аксиальная индукция, ед. = 0.01 mH), запрещен сброс к заводскому значению через F160.
- F873(Сопротивление статора PMSM, ед. = m-ohm, 0.001 ohm), запрещен сброс к заводскому значению через F160.
- F870-F873 это параметры двигателя PMSM, они не указаны на шильдике двигателя. Их можно получить через авто настройку или запросив производителя.

	F876	PMSM ток инжекции без нагрузки (%)	Диапазон значений: 0.0~100.0	Заводское значение: 20.0
	F877	PMSM компенсация тока инжекции без нагрузки (%)	Диапазон значений: 0.0~50.0	Заводское значение: 0.0
	F878	PMSM точка отсечения компенсации тока инжекции без нагрузки (%)	Диапазон значений: 0.0~50.0	Заводское значение: 10.0
	F879	PMSM injection current with heavy load (%)	Setting range: 0.0~100.0	Mfr's value: 0.0

F876, F877 и F879 это процент от номинального тока. F878 это процент от номинальной частоты.

Например:

Когда F876=20, если F877=10 и F878=0, ток инжекции без нагрузки будет 20% от номинального тока.

Когда F876=20, если F877=10 и F878=10, и номинальная частота 50Hz, ток инжекции без нагрузки будет уменьшаться линейно от 30 (F876+F877). Когда инвертор выйдет на частоту 5Hz (5Hz=номинальная частота X F878%), ток инжекции уменьшится до 20, и 5Hz это тока отсечения тока инжекции без нагрузки.

6.10 Параметры связи

		Диапазон значений:	
F900	Номер порта	1~255: адрес инвертора	Заводское значение: 1
		0: общий адрес	
		Диапазон значений:	
F901	Режим связи	1: ASCII	Заводское значение: 2
		2: RTU	
F902	Стоповый бит	Диапазон значений: 1~2	Заводское значение: 2
		Диапазон значений:	
		0: выкл	
F903	F903 Четность	1: нечетный	Заводское значение: 0
		2: четный	
		Диапазон значений:	
		0: 1200;	
		1: 2400;	
5004		2: 4800;	22
F904	Скорость передачи	3: 9600;	Заводское значение: 3
		4: 19200	
		5: 38400	
		6: 57600	
F905	Время тайм-аута (сек.)	Диапазон значений: 0.0~3000.0	Заводское значение: 0.0
F907	Время 2 тайм-аута (сек)	Диапазон значений: 0.0~3000.0	Заводское значение: 0.0

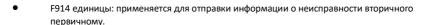
Рекомендованная скорость передачи F904=9600, которая делает работу стабильной.

Параметры связи см. Приложение 4.

Если F905 установлено на 0.0, то функция отключена. Когда F905 ≠ 0.0, и если инвертор не получал команд от PC/PLC в течение времени установленного F905, то инвертор уйдет в CE.

Когда F907>0, и получен предыдущий пакет данных, если следующий пакет данных не получен по истечению времени установленного F907, то инвертор выведет сигнал. После получения очередного пакета данных отсчет времени начнется сначала.

F911	соединение точка-точка	Диапазон значений:	Заводское значение:0
F912	Первичный/Вторичный	Диапазон значений:	Заводское значение: 0


- F911 применяется для включения соединения точка-точка.
- F912 применяется для определения инвертора первичным или вторичным.

			Диапазон значений:	
F	913	Команда на запуск вторичного(Slave)	0: Вторичный не отзывается на команды первичного	Заводское значение: 1
		, , ,	1: Вторичный отзывается на команды первичного	

• Если F913=1, вторичный выполняет команды старт или стоп первичного, кроме команды аварийной остановки, не давайте команды сто вторичному. Если вторичный остановить с клавиатуры, то он уйдет в ESP.

		Диапазон значений:	
		Единицы: Информация о неисправности вторичного	
F914	Информация о	0: Не отправляется информация	2
F914	неисправности вторичного	1: Отправляется информация	Заводское значение: 01
		Десятки: действие первичного при пропадании отклика вторичного	
		0: нет действий 1: тревога	
		Диапазон значений:	
F915	Действия первичного при	0: продолжает работать	2000 00000 000000000 1
F915	неисправности вторичного.	1: свободная остановка	Заводское значение: 1
		2: торможение до подной остановки	

десятки: когда первичный не получает отклика вторичного (должен быть on-line), мастер уйдет в Er44.

 Когда F915=1 или 2, после остановки инвертора, удалите связь между первичным и вторичным, после устранения неисправности вторичного, первичный можно запустить.

	Действие вторичного	Диапазон значений:	
F916	когда первичный	1: Свободная остановка	Заводское значение: 1
	остановлен	2: торможение до полной остановки	

- Если F913=1, то F916 вкл.
- Если F916 = 1, то вторичный свободно остановится.
- Если F916 = 2, вторичный остановится в соответствии со временем торможения.

		Диапазон значений:	
F917	Выполнение вторичным команд	0: крутящий момент	Заводское значение: 0
1917	первичного	1: частота 1(отклонение)	заводское значение. о
		2: частота 2 (отклонение)	

- Выбранное значение на первичном и вторичном должны быть одинаковыми.
- 917 = 0, подходит для случаев с жестким соединением. Первичный должен работать в режиме векторного управления, вторичный должен быть в режиме управления крутящим моментом, и предел скорости вторичного долен быть установлен правильно.
- F917 = 1 и 2, подходит для случаев с гибким соединением, первичный и вторичный работают в режиме управления скоростью и функция управления отклонением активна. Когда F917=1, то заданная частота это частота заданная первичным. Когда F917=2, то заданная частота первичным это текущая частота (только в режиме управления VVVF).

F918	Смещение нуля полученных данных (крутящий момент)	Диапазон значений:0.00~200.00	Заводское значение: 100.00
F919	Усиление полученных данных (крутящий момент)	Диапазон значений:0.00~10.00	Заводское значение: 1.00

- F918 и F919 применяются для установки крутящего момента получаемого от первичного. Ниже формула установки: y=F919 * x + F918 - 100.00.
- Если F918=100.00, то это значит что нет смещения нуля.

F920	Смещение нуля полученных данных (частота)	Диапазон значений:0.00~200.00	Заводское значение:100.00	
F921	Усиление полученных данных (частота)	Диапазон значений:0.00~10.00	Заводское значение:1.00	

F920 и F921 применяются для установки частоты получаемой от первичного. Ниже формула установки: y=F921*x+F920-100.00

Если F920=100.00, то это значит что нет смещения нуля.

F922	Окно	Диапазон значений: 0.00~10.00	Заводское значение: 0.50

 Если F917=0, F922 вкл. Применяется для ограничения скорости вторичного в режиме управления крутящим моментом.

F923	Управление отклонением	Диапазон значений: 0.0(выкл.) 0.1~30.0	Заводское значение: 0.0
------	---------------------------	---	-------------------------

- Если F917 = 1 и 2, режим управления отклонением вкл. когда оба инвертора, первичный и вторичный, в режиме управления скоростью.
- Управление отклонением позволяет небольшое отклонение скорости между первичным и вторичным, коэффициент отклонения должен устанавливаться в соответствии с текущей ситуацией.
- Скорость отклонения= синхронизированная частота *крутящий момент * коэффициент отклонения
- текущая частота инвертора = синхронизированная частота скорость отклонения
- Например, когда F923 = 7%, синхронизированная частота 45Нг, крутящий момент 35%,

То текущая частота на выходе = 45 - (45 * 0.35 * 0.07) = 43.90 Hz.

F924	Время таймаута соединения (сек.)	Диапазон значений: 0.0~3000.0	Заводское значение: 0.0
------	-------------------------------------	-------------------------------	-------------------------

если F924=0.0, то инвертор не проверяет таймаут.

F925	Интервал отправки данных от первичного (сек)	Диапазон значений: 0.000~1.000	Заводское значение: 0.0
		Диапазон значений:	
F926	CAN скорость передачи (kbps)	0: 20 1:50 2:100 3:125	Заводское значение: 6
		4:250 5:500 6:1000	

См. Приложение 9 по работе с первичным/вторичным.

6.11 Параметры PID-регулирования

6.11.1 Внутренне PID регулирование и водоснабжение с постоянным давлением

Внутреннее PID регулирование применяется в водоснабжении с постоянным давлением в система с одним насосом или двумя насосами, или используется для простой замкнутой системы с удобным управлением.

Использование датчика:

FAO2=1: канал AI1

"10V" подключите питание, если питание датчика 5V, то подайте питание 5V.

"AI1" подключите сигнальный выход датчика

"GND" заземлите датчик

FAO2=2: канал AI2

"10V" " подключите питание, если питание датчика 5V, то подайте питание 5V.

"AI2" подключите сигнальный выход датчика

"GND" заземлите датчик

Для датчика по току, входящий двухлинейный сигнал 4-20mA, соедините CM с GND, и 24V подключите как питание датчика.

6.11.2 Параметры

FA00	Режим водоснабжения	Диапазон значений:	Заводское значение: 0	
		0: Один насос (PID регулирование)		
		1: Фиксированная установка		
		2: Работа по времени		

Если FA00=0 то выбран режим управления одним насосом, инвертор управляет только одним насосом. Этот режим управления используется в системах с обратной связью, например по давлению, потоку.

Если FA00=1, один мотор соединен с преобразующим насосом или основным насосом постоянно.

Если FA00=2, два насоса попеременно соединяются с инвертором на фиксированное время. Время задается параметром FA25.

Диапазон значений:

4: FI (импульсный вход)

0: FA04 1: Al1 2: Al2 FA01 PID источник задания установки Заводское значение: 0 3: АІЗ (потенциометр)

Если FA01=0, PID установка задается FA04 или MODBUS.

Если FA01=1, PID установка задается внешним аналоговым сигналом AI1.

Если FA01=2, PID установка задается внешним аналоговым сигналом AI2.

Если FA01=3, PID установка задается потенциометром AI3 на клавиатуре.

Если FA01=4, PID установка задается через импульсный сигнал FI (терминал DI1).

1: AI1 2: AI2 FA02 Источник обратной связи 3: FI (импульсный вход) Заводское значение: 1 4: Зарезервировано 5: Ток нагрузки

Диапазон значений:

Если FA02=1, источником обратной связи является внешний аналоговый сигнал AI1.

Если FA02=2, источником обратной связи является внешний аналоговый сигнал AI2.

Если FA03=3, источником обратной связи является частота импульсного сигнала FI.

Если FA03=5, источником обратной связи является ток нагрузки.

FA03	Максимальное значение PID (%)	FA04~100.0	Заводское значение: 100.0
FA04	Цифровое значение установки PID (%)	FA05~FA03	Заводское значение: 50.0
FA05	Минимальное значение PID (%)	0.1~FA04	Заводское значение: 0.0

Если активировано регулирование по негативной обратной связи, и если давление выше максимального значения PID, то сработает защита по давлению. Если инвертор работает, то произойдет свободная остановка, и высветится "nP".

Если FA01=0, заданное значение FA04 это цифровое значение PID регулирования.

Если активировано регулирование по положительной обратной связи, и если давление выше минимального значения PID, то сработает защита по давлению. Если инвертор работает, то произойдет свободная остановка, и высветится "nP".

Например: если диапазон датчика давления 0-1.6MPa, то заданное давление 1.6*70%=1.12MPa, и максимальное значение PID 1.6*90%=1.44MPa, и минимальное значение PID 1.6*5%=0.08MPa.

FA06	PID полярность	0: Положительная обратная связь	Заводское значение: 1
	·	1: Негативная обратная связь	

При FA06=0, чем выше значение обратной связи, тем выше скорость мотора.

При FA06=1, чем ниже значение обратной связи, тем выше скорость мотора. Это отрицательная обратная связь.

FA07	Функция покоя	Диапазон значений: 0: вкл. 1: Выкл.	Заводское значение: 1
------	---------------	-------------------------------------	-----------------------

При FA07=0, если инвертор работает на минимальной частоте FA09 в течение времени заданного FA10, то инвертор остановится.

При FA07=1, эта функция выключена.

FA09	Мин. частота PID регулирования (Hz)	Диапазон значений:	Заводское значение: 5.00
17103	регулирования (112)	Max(F112, 0.1)~F111	заводеное значение. 3.00

Мин. частота задается FA09 при PID регулировании.

FA10	Время задержки покоя (сек.)	Диапазон значений: 0~500.0	Заводское значение: 15.0

При FA07=0, инвертор работает на минимальной частоте FA09 в течение времени заданного FA10, затем произойдет свободная остановка и инвертор перейдет в состояние покоя, высветится "пр".

FA11	Время задержки пробуждения (сек.)	Диапазон значений: 0.0~3000	Заводское значение: 3.0

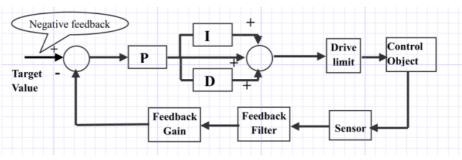
По истечении времени задержки пробуждения, если давление ниже минимального давления (отрицательная обратная связь), то инвертор запустится немедленно, в противном случае, инвертор останется в состоянии покоя.

FA12 Макс. Частота PID (Hz) Диапазон значений: FA09~F111 Заводское значение: 50.00

При включённом PID, FA12 применяется для установки максимальной частоты.

) [FA18	Изменение PID установки	0: выкл. 1: вкл.	Заводское значение: 1
-----	------	-------------------------	------------------	-----------------------

При FA18=0 и FA01≠0, PID установка не может быть изменена.



	FA19	Пропорциональность усиления Р	Диапазон значений: 0.00~10.00	Заводское значение: 0.30
١[FA20	Время интегрирования I (сек)	Диапазон значений: 0.1~100.0	Заводское значение: 0.3
' [FA21	Время дифференцирования	Диапазон значений: 0.0~10.0	Заводское значение: 0.0
	FA22	PID время реакции (сек)	Диапазон значений: 0.1~10.0	Заводское значение: 0.1

Увеличение пропорциональности усиления, уменьшение времени интегрирования и увеличение времени дифференцирования может увеличить динамическую характеристику системы PID с обратной связью. Но если P слишком высокий, I слишком малое или D слишком высокое, то система будет нестабильной.

PID время реакции задается FA22. Это определяет скорость PID регулирования.

Ниже схема PID регулирования.

FA23 РID отрицательная частота Диапазон значений: 0: выкл 1: Valid Заводское значение: С
--

При FA23=1, PID регулятор может выводить отрицательную частоту

FA24	Выбор единицы измерения таймера	Диапазон значений: 0: час 1: minute	Заводское значение: 0
FA25	Время переключения	1~9999	Заводское значение: 100

Время переключения задается F525. Единица измерения таймера задается F524.

FA26	Режим защиты от перегрузки	Диапазон значений 0: нет защиты 1: контактор 2: PID 3: защита по току	Заводское значение: 0
FA27	Пороговое значение тока защиты (%)	Диапазон значений: 10~150	Заводское значение: 80
FA66	Время защиты (сек)	Диапазон значений: 0~60	Заводское значение: 20

Eura Drives 109 E2000

Примечание: Пороговое значение тока защиты это процент от номинального тока.

Защита по низкой нагрузке применяется для экономии энергии, защиты от сухого хода (для насосов) и т.д.

Во время работы, если вдруг нагрузка уменьшается до минимального значения, это значит что механическая часть вышла из строя. Например, порван ремень или отсутствует вода. Защита должна сработать.

При FA26=1, сигнал наличия воды и сигнал отсутствия воды управляются двумя входящими терминалами. Если терминал контролирующий отсутствие воды активен, то инвертор перейдет в состояние защиты, и высветится EP1. Когда терминал наличия воды активен, инвертор сбросит ошибку EP1 автоматически.

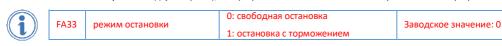
При FA26=2, частота PID регулирования есть максимальная частота, если ток инвертора ниже чем FA27 и номинального тока, инвертор перейдет в состоянии защиты немедленно, и высветится EP2.

При FA26=3, если ток инвертора ниже чем FA27 и номинального тока, по истечении времени FA66, инвертор перейдет в состояние защиты, и высветится EP3.

FA28	Время пробуждения после защиты (мин)	1~3000	Заводское значение: 60
------	--------------------------------------	--------	------------------------

По истечению времени FA28, инвертор проверит пропал ли сигнал защиты.

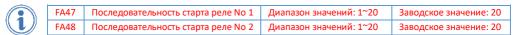
Если ошибка сброшена, инвертор запустится снова. В противном случае инвертор будет ждать пока ошибка не сбросится. Возможен ручной сброс ошибки нажатием клавишы "stop/reset", инвертор остановится.


FA29	PID мертвая зона (%)	0.0~10.0	Заводское значение: 2.0
FA30	Рабочий интервал перезапуска преобразующего насоса (S)	2.0~999.9	Заводское значение: 20.0
FA31 Время задержки пуска основного насоса (се		0.1~999.9	Заводское значение: 30.0
FA32	А32 Время задержки остановки основного насоса (сек)		Заводское значение: 30.0

FA29, PID мертвая зона имеет две функции. Первое, может сдерживать колебания PID Чем больше значение, тем меньше колебания PID регулятора. Но если значение FA29 слишком большое, точность PID регулирования снизится. Например: при FA29=2.0% и FA04=70, PID регулирование будет нормальным при значении обратной связи от 68 до 72.

Второе, FA29 устанавливается при пуске и остановке основного насоса PID регулированием. При включенной отрицательной обратной связи, и если значение обратной связи меньше чем значение FA04-FA29, выдержит время задержки FA31, и затем запустит основной насос. Если значение обратной связи выше чем значение FA04+FA29, инвертор выдержит время задержки FA32, и затем остановит основной насос.

- При пуске основного насоса (работа непосредственно от сети) или по истечении времени переключения, инвертор произведет свободную остановку. После запуска основного насоса, выдержит время задержки FA30, и перезапустит насос работающий от инвертора.
- При управлении инвертором двумя насосами и отрицательной обратной связи, если частота
 достигла максимального значения и по истечении времени задержки (FA31) давление меньше
 чем заданное значение, то инвертор немедленно отключит питание на выходе и мотор свободно
 остановится. В то же самое время основной насос будет запущен. После разгона основного насоса, если давление выше чем заданное значение, инвертор замедлится до минимальной частоты.
 По истечении времени задержки (FA32), инвертор остановит основной насос и запустит насос
 инвертора.


• При управлении инвертором двумя насосами и положительной обратной связи, если частота достигла максимального значения и, по истечении времени задержки (FA31), давление выше чем значение уставки, то инвертор немедленно отключит питание на выходе и мотор свободно остановится. В то же самое время основной насос будет запущен. После разгона основного насоса, если давление ниже чем заданное значение, инвертор замедлится до минимальной частоты. По истечении времени задержки (FA32), инвертор остановит основной насос и запустит насос инвертора.

FA33 применяется для установки режима остановки после остановки преобразующего насоса или переходе в nP и EP.

	FA36	Реле No.1	0: выкл. 1: вкл.	Заводское значение: 0
(\mathbf{i})	FA37	Реле No.2	0: выкл. 1: вкл.	Заводское значение: 0

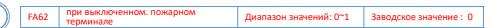
Реле No 1 соответствует терминалу DO1 в панели управления, реле No 2 соответствует терминалу TA/TC

Последовательность старта реле задается FA47~FA48. Заданные значения FA47 и FA48 должны отличаться, в противном случае высветится "Err5".

FA58	Пожарное давление (%)	Диапазон значений: 0.0~100.0	Заводское значение: 80.0

FA58 так же называют вторым давлением, при активации пожарного терминала, заданное значение давления переключится на значение второго давления.

		Диапазон значений:		
FA59	Режим пожара	0: выкл.	Заводское значение: 0	
FA39	гежим пожара	1: Режим пожара 1	заводское значение. О	
		2: Режим пожара 2		


При включенном пожарном режиме и включенном пожарном терминале, запрещается управление инвертором и отключается его защита (При появлении защиты ОС и ОЕ, инвертор перезапустится автоматически и начнет работу). Инвертор будет работать на частоте FA60 или заданной частоте до тех пор пока инвертор не выйдет из строя.

Режим пожара 1: при включенном терминале, инвертор будет работать на заданной частоте.

Режим пожара 2: при включенном терминале, инвертор будет работать на частоте FA60.

•	11				
1.))	FA60	Пожарная частота	Диапазон значений: F112~F111	Заводское значение: 50.0

При выбранном режиме пожара 2 и включенном пожарном терминале, инвертор будет работать на частоте FA60.

• Если FA62=0, инвертор продолжает работать в режиме пожара

Если FA62=1, инвертор выйдет из режима пожара.

6.12 Параметры управления крутящим моментом

		0: управление скоростью	
FC00	выбор управления	1: управление моментом	0
		2: терминальное переключение	

0: управление скоростью. Инвертор работает на заданной частоте, и крутящий момент на выходе будет автоматически совпадать с моментом нагрузки, момент на выходе ограничен максимальным моментом (задано производителем)

- 1: Управление моментом. Инвертор работает с заданным моментом, и скорость на выходе будет автоматически совпадать со скоростью нагрузки, скорость на выходе ограничена максимальной скоростью (заданной FC23 и FC25). Устанавливайте правильно крутящий момент и порог скорости.
- 2: Терминальное переключение. Оператор может установить терминал DIX как терминал переключения момент/скорость для выполнения переключений между крутящим моментом и скоростью. При включенном терминале, включено управление моментом. При выключенном терминале, включено управление скоростью.

FC02 Время разг/тормож. (сек) 0.	0.1~100.0	1.0
----------------------------------	-----------	-----

Время за которое инвертор разгоняется от 0% до 100% номинального момента.

		0: цифровои (FC09)	
		1: Аналоговый вход АІ1	
FC06	Метоници за панного момента	2: Аналоговый вход AI2	0
FCU6	Источник заданного момента	3: Аналоговый вход Al3	U
		4: Импульсный вход FI	
		5: Зарезервировано	

При FC06=4, только терминал DI1 может быть выбран, т.к. только терминал DI1 имеет функцию импульсного входа.

FC07	Коэффициент заданного момента	0~3.000	3.000
FC09	Значение команды (%)	0~300.0	100.0

FC07: когда момент достигнет максимального значения, FC07 это отношение момента на выходе к номинальному моменту мотора. Например, если FC06=1, F402=10.00, FC07=3.00, при выходном канале Al1 10V, момент на входе инвертора буде равен 3 номинальным моментам мотора.

	0: цифровои (FC17)	
	1: Аналоговый вход АІ1	
Variation and the same of the	2: Аналоговый вход AI2	
FC14 Компенсация момента	3: Аналоговый вход АІЗ	0
	4: Импульсный вход FI	
	5: Зарезервировано	
Коэффициент компенсации момента	0~0.500	0.500
Частота (%)	0~100.0	10.00
Значение команды компенсации (%)	0~50.0	10.00
	Частота (%)	1: Аналоговый вход Al1 2: Аналоговый вход Al2 3: Аналоговый вход Al3 4: Импульсный вход Fl 5: Зарезервировано Коэффициент компенсации момента 0~0.500 Частота (%) 0~100.0

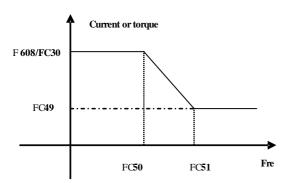
- Компенсация крутящего момента применяется для вывода большего стартового крутящего момента который равен заданному моменту и компенсации момента когда мотор приводит нагрузку с большой инерцией. При текущей скорости ниже чем заданная частота FC16, компенсация момента задается FC14. При текущей скорости выше заданной частоты FC16, компенсация момента равна 0.
- При FC14≠0, и достижения максимального значения компенсации момента, FC15 это отношение компенсации момента к номинальному моменту мотора. Например: если FC14=1, F402=10.00 и FC15=0.500, при выходном канале Al1 10V, компенсация момента равна 50% номинального момента мотора.

FC22	Источник ограничения скорости вперед	0: Цифровой (FC23) 1: Аналоговый вход AI1 2: Аналоговый вход AI2 3: Аналоговый вход AI3 4: Импульсный вход FI 5: Зарезервировано	0
FC23	Ограничение скорости вперед (%)	0~100.0	10.0
FC24	Источник ограничения скорости назад	0: Цифровой (FC25) 1: Аналоговый вход Al1 2: Аналоговый вход Al2 3: Аналоговый вход Al3 4: Импульсный вход Fl 5: Зарезервировано	0
FC25	Ограничение скорости назад (%)	0~100.0	10.0

•Ограничение скорости FC23/FC25: если скорость достигает максимального значения, этот параметр применяется для установки процентного отношения частоты на выходе и максимальной частоты. F111.

0: Цифровой (FC30)

		a. 4	
		1: Аналоговый вход АІ1	
5620	M	2: Аналоговый вход AI2	
FC28	Источник ограничения момента	3: Аналоговый вход AI3	0
		4: Импульсный вход FI	
		5: Зарезервировано	
FC29	Коэффициент ограничения момента	0~3.000	3.000
FC30	Ограничение момента (%)	0~300.0	200.0
		0: Цифровой (FC35)	
		1: Аналоговый вход АІ1	
FC22	Management	2: Аналоговый вход AI2	
FC33 Источник тормозящего момента	источник тормозящего момента	3: Аналоговый вход AI3	0
		4: Импульсный вход FI	
		5: Зарезервировано	
FC34	Коэффициент тормозящего момента	0~3.000	3.000
FC35	Ограничение тормозящего момента (%)	0~300.0	200.00



- Когда мотор запитан, источник ограничения момента задается FC28. При FC28≠0, ограничение момента задается FC29. Если FC28= 0, ограничение момента задается FC30.
- Когда мотор находится в режиме торможения, Источник тормозящего момента задается FC31. При FC33≠0, ограничение момента задается FC34. Если FC33= 0, ограничение момента задается FC35.

FC48	Переключение момента	0: выкл. 1: вкл.	0
FC49	Точка ограничения 2 (%)	50~200	120
FC50	Точка переключения частоты 1(Hz)	1.00~FC51	15.00
FC51	Точка переключения частоты 2(Hz)	FC50~F111	30.00

- FC48 применяется для ограничения максимального момента или максимального тока. Применяется для ограничения тока в режиме векторного управления и для ограничения момента.
- FC49 процентное соотношение от номинального тока в режиме VF и автоматического крутящего момента. FC49 это процентное соотношене от номинального крутящего момента в режиме векторного управления.
- FC50 и FC51 это частота точки переключения, когда момент или ток изменились. См. рис. ниже.

6.13 Параметры второго мотора

См. Приложение 6, группу параметров F8.

6.14 Отображаемые параметры

	H000	Текущая частота/заданная частота(Hz)		
--	------	--------------------------------------	--	--

В режиме ожидания, отображается заданная частота. В рабочем режиме, отображается текущая частота.

H001 Текущая скорость/заданная скорость (rpm)		
---	--	--

В режиме ожидания, отображается заданная скорость. В рабочем режиме, отображается текущая скорость.

Н002 Ток на выходе (А)

В рабочем режиме, отображается ток на выходе. В режиме ожидания, Н002=0.

H003 Напряжение на выходе (V)

В рабочем режиме, отображается напряжение на выходе. В режиме ожидания, Н003=0.

H004 (V)

Напряжение на шине отображается в Н004.

H005 обратная связь PID (%)

Значение обратной связи PID отображается в H005.

H006 Температура (°C)

Температура инвертора отображается в Н006.

Н007 Значение счетчика

Значение счетчика импульсного входа DI1 отображается в H007.

Н008 Линейная скорость

Линейная скорость отображается в Н008.

H009 Заданное значение PID (%)

Заданное значение PID отображается в H009.

H010	Длина пряжи	
H011	Центральная частота (Hz)	

Длина пряжи и центральная частота отображаются в Н010 и Н011.

H012 Мощность на выходе (KW)

Мощность на выходе отображается в Н012.

H013	Момент на выходе (%)	
H014	Заданный момент (%)	

Момент на выходе отображается в Н013 и заданный момент отображается в Н014.

Н015 Последовательность фаз энкодера

H015 применяется для проверки совпадает ли направление энкодера с заданным направлением, см. F854.

Eura Drives 115 E2000

Н017 Текущая скорость для многоскоростного режима

В многоскоростном режиме, текущая скорость отображается в Н017.

H018	Частота входящего импульса	

Частота входящего импульса терминала DI1 отображается в H018, единица измерения 0.01

H019	Скорость обратной связи (Hz)	
H020	Скорость обратной связи (об/мин)	

Скорость обратной связи отображается как частота в H019. Скорость обратной связи отображается как скорость в H020.

H021	напряжение Al1 (цифровой)	
H022	напряжение AI2 (цифровой)	
H023	напряжение AI3 (цифровой)	

Напряжение аналогового входа отображается в Н021, Н022 и Н023.

H025	Время включенного питания (мин.)	
H026	Время работы (мин.)	

Время включенного питания и время работы отображаются в Н025 и Н026.

H027	Частота входящего импульса (Hz)	

Частота входящего импульса отображается в H027, единица измерения 1Hz.

H030	Основная частота X (Hz)	
H031	Дополнительная частота Y(Hz)	

Основная частота и дополнительная частота отображаются в Н030 и Н031.

H033	Момент посланный первичным	
H034	Частота посланная первичным	
H035	Количество вторичных	

Н033 применяется для отображения процентов от номинального момента.

Н034 применяется для отображения частоты посланной первичным.

Н035 показывает количество вторичных.

Приложение 1 Устранение неисправностей

В случае возникновения неисправности, не пытайтесь перезапустить инвертор сразу. Выявите причину неисправности и устраните ее.

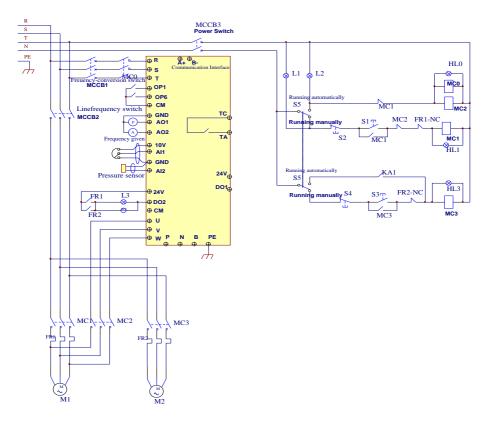
Выполните действия в соответствии с данным руководством. Если проблема не решена, свяжитесь с производителем. Не пытайте отремонтировать инвертор самостоятельно.

Таблица 1-1 Общие неисправностей инвертора

Ошибка	Описание	Причина	Способ устранения
Err0	Запрет изменения параметров	* Запрет изменения параметров во время работы.	* Измените параметры в режиме ожидания.
Err1	Не правильный пароль	*Введен неправильный пароль * Не введен пароль при изменении параметров.	* Введите правильный пароль.
2: O.C.	Высокий ток	* короткое время разгона	*увеличьте время разгона; *проверьте кабель и обмотку;
16: OC1	Высокий ток 1	* короткое замыкание на выходе * блокировка ротора мотора	*проверьте не перегружен ли мотор;
67:0C2	Высокий ток 2	* слишком большая нагрузка. * неправильные параметры настройки.	*уменьшите значение компенсации V/F * настройте параметры правильно.
3: O.E.	Высокое напряжение	*высокое напряжение питания; *высокая инерция нагрузки; *короткое время торможения; *motor inertia rise again * плохой эффект динамического торможения *parameter of rotary speed loop PID is set abnormally.	*проверить входящее напряжение; *добавить тормозное сопротивление; *увеличить время торможения; * Увеличить эффект динамического торможения; *set the parameter of rotary speed loop PID correctly; * Переключить на режим VF для вентилятора;
4: P.F1	Обрыв фазы питания	* Обрыв фазы питания	*проверить питание;
5: O.L1	Перегрузка инвертора	* Слишком большая нагрузка	*уменьшить нагрузку; *увеличить мощность инвертора
6: L.U.	Пониженное напряжение	*Пропадание напряжения	*проверить напряжение на входе * проверить параметры.
7: O.H.	Перегрев радиатора	*высокая температура окружающей среды; *загрязнение радиатора *плохая вентиляция в месте установки; *вентилятор поврежден * Частота несущей волны слишком высокая.	*улучшить вентиляцию; *очистить радиатор; *установить в соответствии с требованиями; *заменить вентилятор * Уменьшить частоту несущей волны.

В. О.12 Перегруака могора Причина Способ устранения Туменьшить нагрузку; Туме				
8: 0.12 Моторя	Ошибка	Описание	Причина	Способ устранения
12: Егг3 Неисправность до запуска 13: Егг2 Неправильная настройка параметров параметр	8: O.L2	Перегрузка мотора	* нагрузка слишком большая	
12: Егг3 запуска вапуска в 3-лектродвигатель не подключите электродвигатель не подключите электродвигатель не параметров в 3-лектродвигатель	11: ESP	Внешняя ошибка	*Активен терминал внешней аварийной остановки.	*Проверить внешнюю ошибку.
15: Егг4 Нулевой ток *Неисправен плоский кабель. *проверить кабель. * обратитесь в сервисную службу. 17: РF0 Обрыв фазы на выходе * Мотор неисправен * проверить кабель. * Обостечить инвертор инвертор инвертора. * Уменьшить кабель. * Уменьшить кабель. * Уменьшить кабель. * Установить правильные параметры править кабель. * Заменить кабель. * заменить кабель. * заменить кабель. * заменить кабель. * утановить правильные параметры мотора. * Установить правильные параметры мотора. <td>12: Err3</td> <td>Неисправность до запуска</td> <td>* Неисправность до запуска</td> <td>*обратитесь в сервисную службу</td>	12: Err3	Неисправность до запуска	* Неисправность до запуска	*обратитесь в сервисную службу
15: Егг4 Нулевой ток	13: Err2	Неправильная настройка параметров	* Электродвигатель не подключен при измерении параметров	*подключите электродвигатель.
** Мотор неисправен ** проверить кабель. ** проверить кабель. ** проверить кабель. ** проверить кабель. ** проверить мотор. ** проверить правильные параметры ** проверить параметры ** проверить параметры ** проверить кабель. ** проверить параметры связи **	15. Err/	Нуповой ток	*Неисправен плоский кабель.	*проверить кабель.
17: РРО Обрыв фазы на выкоде * Обрыв кабеля. * проверить мотор. 18: АЕгг Нет соединения * нет соединения с аналоговым сигнала. * проверить соединение. * заменить источник сигнала. 19: ЕРЗ Отсутствует нагрузка * Нет воды. * Обеспечить наличие воды * Заменить источник сигнала. 20: ЕР/ЕР2 Контроль давления. * Высокое давление при положительного обратной связи. * Утремонтировать обрудование. 22: пР Контроль давления. * Неправильные параметры при положительного обратной связи. * Уменьшить мин. частоту РІD. * Неправильные давления (1- фазовые имеют защиты) * Неправильные параметры РІD. * Установить правильные параметры. 32: РСЕ Ошибка РМЅМ * Поврежден кабель мотора. * заменить кабель. * Неправильные параметры мотора. * Неправильные параметры потремонтировать мотор. * свяжитесь с производителем. 32: РСЕ Ошибка РМЅМ * Неправильные параметры мотора. * Уменьшить нагрузку. 35: ОН1 Перегрев РТС * защита внешнего реле. * Отсутствует связь между первичыми вторичным вторичным вторичным вторичным вторичным вторичным вторичным нагрузку. * Проверить параметры связи 45: СЕ Ощибка связи, таммаут * Отсутс	15. EII4	пулевой ток	*Неисправен датчик тока.	* обратитесь в сервисную службу.
18: АЕгг Нет соединения * неисправен источник сигнала. * заменить источник сигнала. * заменить источник сигнала. * заменить источник сигнала. * заменить источник сигнала. * Обеспечить наличие воды * заменить ремень. * Оборудование неисправно. * Заменить ремень. * Оборудование при отрицательной обратной связи. * Уменьшить мин. частоту РІD. * Перезпрустить инвертор в нормальном режиме. * Уменьшить мин. частоту РІD. * Перезпрустить инвертор в нараметры РІD. * Перезпрустить инвертор в нараметры РІD. * Перезпрустить инвертор в нараметры РІD. * Зашита заземления (1-фазовые имберт защиты) * Поврежден кабель мотора. * заменить кабель. * заменить кабель. * отремонтировать мотор. * свяжитесь с производителем. * Уменьшить нагрузку. * Проверить кабель. * проверить кабель. * проверить кабель. * проверить кабель. * уменьшить нагрузку. * Проверить кабель. * проверить параметры скорость передачи данных * проверить параметры скорость передачи * * РС/РLС не посылает команды в течение определенного времени * Проверить линию соединения. * * устранить помехи * * устранить помехи * * устранить помехи * * свяжитесь с производителем. * * * * * * * * * * * * * * * * * * *	17: PF0	Обрыв фазы на выходе	* Обрыв кабеля.	· · ·
19: ЕРЗ Отсутствует нагрузка* 20: ЕР/ЕР2 Отсутствует нагрузка* Торван ремень. Торвания связи. Торвания проверить параметры. Торванить кабель. Тороверить вешнее обрудвание. Тороверить кабель. Тороверить параметры связи Тороверить параметры сворьные параметры связи Тороверить параметры сворьные параметры связи Тороверить параметры параметры сворьные параметры сворьные параметры парамет	18: AErr	Нет соединения	сигналом	
20: ЕР/ЕР2 * Оборудование неисправно. * Отремонтировать оборудование. 22: пР Контроль давления. * Низкое давление при отрицательной обратной связие. * Уменьшить мин. частоту РІD. * Перезапустить инвертор в нормальном режиме. 23: Егг5 Неправильные параметры РІD. * Неправильные параметры РІD. * Установить правильные параметры. 26: GP Зашита завамления (1-фазовые инверторы не имеют защиты) * Поврежден кабель мотора. * Заменить кабель. * Отремонтировать мотор. * Неисправность инвертора. * Отремонтировать мотор. * Свяжитесь с производителем. 32: PCE Ошибка PMSM * Неправильные параметры мотора. * Установить правильные параметры мотора. * Неисправильные параметры мотора. * Установить правильные параметры мотора. * Уменьшить нагрузку. 35: OH1 Перегрев РТС * защита внешнего реле. * Установить правильные параметры параметры мотора. * Установить правильные параметры мотора. * Уменьшить нагрузку. * Уменьшить нагрузку. * Уменьшить нагрузку. * Уменьшить нагрузку. * * Отсутствует связь между первичным и вторичным вторичным * Проверить кабель. * * проверить кабель. * * проверить параметры скланию в течение определенного времени * Проверить параметры срязи 45: CE Ощибка связи, таймаут Пропадание связи * РС/РІС не посылает команды в течение определенного времени * Проверить линию соединения. * Проверить линию соединения. * Устранить помехи * Устранить помехи * Устранить помехи * Свяжитесь с производителем. *	19: EP3		* Нет воды.	
*Высокое давление при отрицательной обратной связие. *Низкое давление при положительной обратной связие. *Низкое давление при положительной обратной связие. *Инвертор в состоянии покоя. *Перезапустить инвертор в недаметры РІD. *Перезапустить инвертор в надаметры. *Заменить кабель. *Заменить кабель. *Отереждена изоляция мотора. *Свяжитесь с производителем. *Установить павильные параметры параметры мотора. *Установить парамить параметры параметры мотора. *Проверить внешнее оборудование. *Проверить внешнее оборудование. *Проверить кабель. *проверить кабель. *проверить кабель. *проверить параметры связи *Проверить параметры связи *РС/РLС не посылает команды в течение определенного времени *Проверить линию соединения. *Терей динь и вторичь и втеричь и втечение определенного времени *Проверить линию соединения. *Установить кабель. *Проверить параметры связи *РС/РLС не посылает команды в течение определенного времени *Проверить линию соединения.	20. FD/FD2	Отсутствует нагрузка	* Порван ремень.	
22: пР Контроль давления. * Низкое давление при положительной обратной связи. * Перезапустить инвертор в нормальном режиме. 23: Err5 Неправильные параметры РID * Инвертор в состоянии покоя. * Установить правильные параметры. 26: GP Зашита закмления (1- зазамления (1- зазамления (1- зазамления) и неисправность инвертора. * Товреждена изоляция мотора. * отремонтировать мотор. * отремонтировать мотор. 32: PCE Ошибка PMSM * Неправильные параметры мотора. * Установить правильные параметры мотора. 35: OH1 Перегрев РТС * защита внешнего реле. * Проверить внешнее оборудование. 44: Er44 Нет связи между первичным и вторичным вторичным и проверить параметры связи * РС/РLС не посылает команды в течение определенного времени "Проверить линию соединения. 45: CE Ощибка связи, таимаут Пропадание связи * устранить помехи " устранить помехи " устранить помехи " устранить помехи " свяжитесь с производителем.	20: EP/EP2		1.11.1	оборудование.
26: GP Защита заземления (1-фазовые инверторы не имеют защиты) *Поврежден кабель мотора. *Повреждена изоляция мотора. *Свяжитесь с производителем. 32: PCE Ошибка PMSM *Неправильные параметры мотора. *Установить правильные параметры мотора. *Уменьшить нагрузку. *Уменьшить нагрузку. *Уменьшить нагрузку. *Уменьшить нагрузку. *Проверить внешнее оборудование. *Проверить кабель. *проверить кабель. *проверить параметры кабель. *проверить параметры кабель. *проверить параметры скорость передачи данных *проверить параметры связи *РС/РІС не посылает команды в течение определенного времени *Проверить линию соединения. *Проверить линию соединения. *Троверить линию соединения. *Троверить параметры связи *РС/РІС не посылает команды в течение определенного времени *Проверить линию соединения. *Троверить линию соединения. *Тровери	22: nP	Контроль давления.	* Низкое давление при положительной обратной связи.	_
26: GP фазовые инверторы не имеют защиты) *Повреждена изоляция мотора. *свяжитесь с производителем. 32: PCE Ошибка PMSM *неисправность инвертора. *Установить правильные параметры мотора. *Уменьшить нагрузку. 35: OH1 Перегрев PTC *защита внешнего реле. *Проверить внешнее оборудование. *Проверить кабель. *проверить кабель. *проверить кабель. *проверить скорость передачи данных *проверить параметры скорость передачи данных *проверить параметры связи *PC/PLC не посылает команды в течение определенного времени *Проверить линию соединения. 47: EEEP EEPROM ошибка чтение/запись *помехи * устранить помехи * устранить помехи * свяжитесь с производителем.	23: Err5	Неправильные параметры PID	* Неправильные параметры PID.	* Установить правильные параметры.
*большая нагрузка. *Уменьшить нагрузку. 35: ОН1 Перегрев РТС *защита внешнего реле. *Проверить внешнее оборудование. 44: Ег44 Нет связи между первичным и вторичным и вторичным и вторичным и вторичным и вторичным и тервичным и вторичным и тервичным и вторичным и тервичным и терви	26: GP	фазовые	*Повреждена изоляция мотора.	*отремонтировать мотор.
# проверить кабель. *проверить скорость передачи данных проверить скорость передачи данных проверить параметры связи *проверить параметры связи *проверить параметры связи *РС/РLС не посылает команды в течение определенного времени *Проверить линию соединения. 47: EEEP **EEPROM ошибка чтение/запись **TOMEXIA** **T	32: PCE	Ошибка PMSM		параметры мотора.
# проверить кабель. *проверить скорость передачи данных проверить скорость передачи данных проверить параметры связи *проверить параметры связи *проверить параметры связи *РС/РLС не посылает команды в течение определенного времени *Проверить линию соединения. 47: EEEP **EEPROM ошибка чтение/запись **TOMEXIA** **T	35: OH1	Перегрев РТС	*защита внешнего реле.	*Проверить внешнее оборудование.
45: CE Ощибка связи, Таймаут Пропадание связи Течение определенного времени *Проверить линию соединения. 47: EEEP EEPROM ошибка чтение/запись *помехи * устранить помехи * свяжитесь с производителем.	44: Er44	между первичным и	* Отсутствует связь между первичным и вторичным	* проверить кабель. *проверить скорость передачи данных
47: ЕЕЕР ЧТЕНИЕ/Запись *ЕЕРROM поврежден. * свяжитесь с производителем.	45: CE	Ошибка связи, таймаут	Пропадание связи	*PC/PLC не посылает команды в течение определенного времени
49: Err6 Watchdog fault Watchdog timeout *please check watchdog signal	47: EEEP	EEPROM ошибка чтение/запись		
	49: Err6	Watchdog fault	Watchdog timeout	*please check watchdog signal

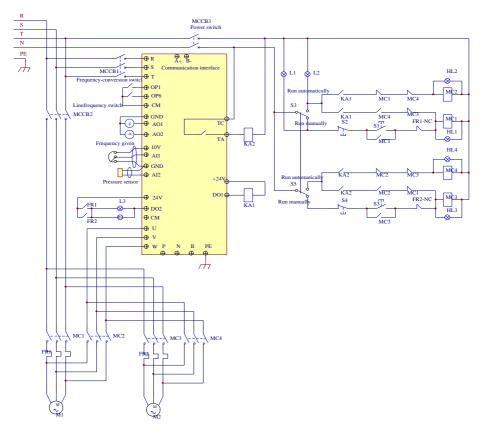
Таблица 1-2 Неисправности мотора и способы устранения


Неисправность	Причина	Способ устранения
	Нет питания.	Проверить подключение;
	Неверные параметры.	Подать питание;
Мотор не запускается	Большая нагрузка.	Проверить мотор, уменьшить
	Мотор неисправен.	нагрузку.;
	Сработала защита.	Проверить по таблице 1-1
Неправильное направление	Неправильное подключение U, V, W.	Сделать правильное подключение
вращения	Неправильные параметры	Установить правильные параметры.
Электродвигател ь вращается, но	Неправильное подключение.	Сделать правильное подключение;
скорость	Неправильное программирование.	Изменить программирование;
изменить невозможно	Большая нагрузка.	Уменьшить нагрузку '
Скорость	Неправильные параметры мотора.	Проверить данные на шильдике
электродвигател я слишком	Неправильное программирование.	мотора;
высокая или низкая.	Напряжение на выходе инвертора.	Изменить программирование. Проверить напряжение на выходе.
	Большая нагрузка.	Уменьшить нагрузку;
Мотор работает	Большие скачки нагрузки.	уменьшить скачки нагрузки,
не стабильно	Обрыв фазы.	заменить мотор;
	Неисправность мотора.	Проверить питание.
		Проверьте входные провода;
Отключение		Проверьте вводной автомат;
питания	Слишком высокий ток на входе	Снизьте нагрузку;
		Проверьте ошибки инвертора.

Приложение 2 Схема подключения системы водоснабжения

1. Постоянный режим, **1** инвертор постоянно управляет **2** насосами Инструкция по подключению:

1. Произведите подключение в соответствии со схемой ниже, после проверки подключения



замкните контактор МССВ3.

- 2. Установите F208=1, F203=9, FA00=1, FA36=1, FA37=1, FA47=1, FA48=2, FA04=давление в процентах, FA03=максимальное давление, и FA05.
- 3. В ручном режиме замкните контактор МССВ2. При нажатии S1, насос М1 начинает работать. При нажатии S2, насос М1 останавливается. При нажатии S3, M2 начинает работать. При нажатии S4, M2 останавливается.
- 4. В автоматическом режиме замкните контакторы МССВ1 и МССВ2.
- Когда инвертор запитан, он будет крутить вперед при подключении к терминалу DI3 (или назад при подключении к терминалу DI4), M1 будет работать в режиме управления частоты.
- Если давление недостаточно высокое, инвертор увеличит частоту до максимальной. Если давление по прежнему недостаточно высокое по истичении времени FA31, инвертор свободно остановится, и насос M2 начнет работать на частоте сети. По истичении времени FA30, инвертор начнет работать, и M1 будет работать в режиме управления частоты.
- При одновременно работающих двух насосах, если давление слишком высокое, инвертор замедлится до минимальной частоты. Если давление по прежнему слишком высокое по истечении времени FA32, M2 остановится.
- Если один насос М1 работает в режиме управления частоты., и инвертор работает на минимальной частоте, инвертор свободно остановится по истичении времени FA10, инвертор

2.Переменный режим, 1 инвертор попеременно управляет 2 насосами.

Инструкция по подключению:

- Произведите подключение в соответствии со схемой выше, после проверки подключения замкните контактор МССВ3.
- 2. Установите F208=1, F203=9, FA00=2, FA36=1, FA37=1, FA47=1, FA48=2, FA04= давление в процентах, FA03= максимальное давление, и FA05
- 3. В ручном режиме замкните контактор МССВ2. При нажатии S1, насос М1 начинает работать. При нажатии S2, насос М1 останавливается. При нажатии S3, М2 начинает работать. При нажатии S4, M2 останавливается.
- 4. В автоматическом режиме замкните контакторы МССВ1 и МССВ2.
- Когда инвертор запитан, при замыкании КА1, инвертор будет крутить вперед при подключении к терминалу DI3, КА2 запускает М1 в режиме управления частоты. Если давление недостаточно высокое, инвертор увеличит частоту до максимальной. Если давление по прежнему недостаточно высокое по истечении времени FA31, инвертор свободно остановится, и насос М2 начнет работу на частоте сети. По истечении времени FA30, инвертор начнет работать, и М1 будет работать в режиме управления частоты.

- По истечении времени FA25, все насосы свободно остановятся, при замыкании KA2, M2 будет работать в режиме управления частоты.. Если давление недостаточно высокое, инвертор увеличит частоту до максимальной. Если давление по прежнему недостаточно высокое по истечении времени FA31, инвертор свободно остановится, и KA1 запустит M1 на частоте сети. По истечении времени FA30, инвертор запустится, и M2 будет работать в режиме управления частоты.
- При одновременно работающих двух насосах, если давление слишком высокое, инвертор уменьшит частоту до минимальной. Если давление по прежнему слишком высокое по истечении времени FA32, основной насос остановится.
- Если один насос работает в режиме управления частоты, и инвертор работает на минимальной частоте, инвертор свободно остановится по истечении времени FA10, инвертор перейдет в состояние покоя, и высветится nP.

Приложение 3 Продукция и устройство

Диапазон мощностей инверторов версии E2000 $0.4\sim$ 400kW. Основные данные мс. в Таблице 3-1 и 3-2. Может быть два (или более двух) вариантов конструкции для определенных продуктов.

Инвертор должен работать с номинальным выходным током, допускаются кратковременные перегрузки. Тем не менее, не допускается превышение допустимых значений во время работы.

Таблица 3-1 Список инверторов серии Е2000

Модель	Мощность (kW)	Номинальный ток на выходе	Структурный код	Bec (kg)	Охлаждение	Примечания
E2000-0004S2	0.4	2.5	E1	1.4	Воздушное	
E2000-0007S2	0.75	4.5	E1	1.5	Воздушное	Одно-фазный пластиковое крепление
E2000-0015S2	1.5	7.0	E2	2.0	Воздушное	фазн Иков Илени
E2000-0022S2	2.2	10.0	E2	2.1	Воздушное	е 00 6 6
E2000-0007T3	0.75	2.0	E2	2.0	Воздушное	Тре
E2000-0015T3	1.5	4.0	E2	2.1	Воздушное	ух-фа
E2000-0022T3	2.2	6.5	E2	2.2	Воздушное	йч
E2000-0030T3	3.0	7.0	E3	2.5	Воздушное	плас
E2000-0040T3	4.0	9.0	E4	3.0	Воздушное	ТИКОЕ
E2000-0055T3	5.5	12.0	E4	3.5	Воздушное	Трех-фазный пластиковое крепление
E2000-0075T3	7.5	17.0	E5	4.5	Воздушное	репл
E2000-0110T3	11	23.0	E5	4.8	Воздушное	өниө

Модель	Мощность (kW)	Номинальный ток на выходе	Структурный код	Bec (kg)	Охлаждение	Примечания
E2000-0150T3	15	32.0	E6	8.0	Воздушное	
E2000-0185T3	18.5	38.0	E6	8.5	Воздушное	
E2000-0220T3	22	44.0	E6	9.0	Воздушное	
E2000-0300T3	30	60.0	С3	22.5	Воздушное	
E2000-0370T3	37	75.0	C4	24	Воздушное	Трех-фазный пластиковое крепление
E2000-0450T3	45	90.0	C4	24.5	Воздушное	фазн
E2000-0550T3	55	110.0	C5	41.5	Воздушное	ЫЙП
E2000-0750T3	75	150.0	C5	42	Воздушное	1асти
E2000-0900T3	90	180.0	C6	56	Воздушное	ково
E2000-1100T3	110	220.0	C6	56.5	Воздушное	екре
E2000-1320T3	132	265.0	C7	87	Воздушное	плен
E2000-1600T3	160	320.0	C8	123	Воздушное	e Z
E2000-1800T3	180	360.0	C8	123.5	Воздушное	
E2000-2000T3	200	400.0	С9	125	Воздушное	
E2000-2200T3	220	440.0	CA	185	Воздушное	
E2000-2500T3	250	480.0	CA	185.5	Воздушное	
E2000-2800T3	280	530.0	СВО	225	Воздушное	Тре мета кр
E2000-3150T3	315	580.0	СВО	230	Воздушное	Трех-фазный металлическо крепление
E2000-3550T3	355	640.0	СВО	233	Воздушное	3ный іеско

E2000-4000T3

400

690.0

СВ

233.5

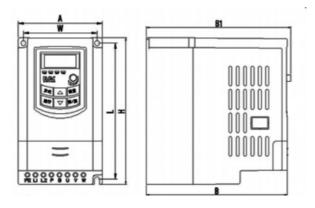
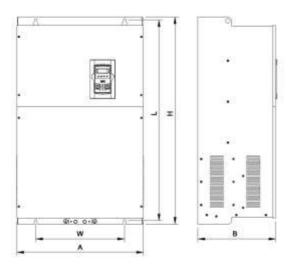

Воздушное

Таблица 3-2 Структурный код


I				
Структурный код	Габаритные размеры [A×B(B1)×H]	Размеры крепления(W×L)	Крепежный болт	
E1	80x135 (142) x138	70x128	M4	٦
E2	106×150 (157) ×180	94×170	M4	пластиковое крепление
E3	106×170(177)×180	94×170	M4	1КОВС
E4	138×152(159)×235	126×225	M5	е кре
E5	156×170(177)×265	146×255	M5	эплен
E6	205×196(202)×340	194×330	M5	e Z
C3	265×235×435	235×412	M6	
C4	315×234×480	274×465	M6	
C5	360×265×555	320×530	M8	
C6	410×300×630	370×600	M10	3
C7	516×326×765	360×740	M10	металлическое крепление
C8	560×342×910	390×882	M10	уталлическо крепление
С9	400×385×1310	280×1282	M10	fe Koe
CA	535×380×1340	470×1310	M10	
CB0	600×380×1463	545×1433	M10	
СВ	600×380×1593	545×1563	M10	

Примечание : единица измерения mm.

Пластиковый профиль

Металлический профиль

Примечание: если на панели управления имеется потенциометр, то габаритный размер В1. если на панели управления отсутствует потенциометр, то габаритный размер В.

Приложение 4 Выбор тормозного сопротивления.

Модель инвертора	Мощность (kW)	Мин. значение резистора (Ω)	Мин. мощность резистора (W)
E2000-0004S2	0.4		
E2000-0007S2	0.75	80	20014
E2000-0015S2	1.5	80	200W
E2000-0022S2	2.2		
E2000-0007T3	0.75	145	80W
E2000-0015T3	1.5	95	150W
E2000-0022T3	2.2	95	250W
E2000-0030T3	3.0	95	300W
E2000-0040T3	4.0	95	400W
E2000-0055T3	5.5	95	550W
E2000-0075T3	7.5	95	750W
E2000-0110T3	11	60	1.1kW
E2000-0150T3	15	35	1.5kW
E2000-0185T3	18.5	35	2.0kW
E2000-0220T3	22	30	2.2kW
E2000-0300T3	30	25	3.0kW
E2000-0370T3	37	25	4.0kW
E2000-0450T3	45	15	4.5kW
E2000-0550T3	55	15	5.5kW
E2000-0750T3	75	12	7.5kW
E2000-0900T3	90	8	9.0kW
E2000-1100T3	110	8	11kW

Примечание: в случае нагрузки с большой инерцией, если тормозной резистор сильно греется, установите резистор с мощностью большей, чем рекомендуется.

Приложение 5 Руководство по коммуникации. (Версия 1.8)

Общая информация

Modbus представляет собой последовательный асинхронный протокол связи. Протокол Modbus является языком общего применения с PLC и другими управляющими модулями.

Более подробную информацию по протоколу MODBUS вы сможете найти в справочной литературе или запросить у производителя.

II. Протокол Modbus

2.1 Режим передачи данных

2.1.1 Формат

1) режим ASCII

Начало	Адрес	Функция	Данные			Контроль четности LRC		Конец		
:(0X3A)	Адрес инвертора	Код Функции	Длина данных	Данные 1		Данные N	Старший байт LRC	Младший байт LRC	Возврат каретки	Перевод строки
		47	H					54	(OXOD)	(0X0A)

2) режим RTU

Начало	Адрес	Функция	Данные	Контроль четности CRC		Конец
T1-T2-T3-T4	Адрес инвертора	Код функции	Данные N	Старший байт CRC	Младший байт CRC	T1-T2-T3-T4

2.1.2 Режим ASCII

В режиме ASCII, один байт (шестнадцатеричное число) выражен двумя символами ASCII.

Например, 31H (шестнадцатеричное число) включает два символа ASCII'3(33H)','1(31H)'.

Шестнадцатеричные символы в кодировке ASCII передставлены в таблице:

Символ	'0'	'1'	'2'	'3'	'4'	' 5'	'6'	'7'
ASCII код	30H	31H	32H	33H	34H	35H	36H	37H
Символ	'8'	' 9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII код	38H	39H	41H	42H	43H	44H	45H	46H

2.1.3 Режим RTU

В режиме RTU, один вайт выражен в шестнадцатеричном виде. Например, 31H доставляется в пакете данных.

2.2 Скорость передачи данных

Диапазон значений: 1200, 2400, 4800, 9600, 19200, 38400, 57600

2.3 Структура данных:

ASCII mode

```
Байт Функция
Стартовый бит (Нижний уровень) 1
Бит данных
Проверочный бит (отсутствует если нет проверки, иначе 1 бит)
Стоп-бит (1 бит в случае проверки, иначе 2 бита)
7
0/1
1/2
```

2) RTU mode

```
Байт Функция
Стартовый бит (Нижний уровень)1
Бит данных
Проверочный бит (отсутствует если нет проверки, иначе 1 бит)
Стоп-бит (1 бит в случае проверки, иначе 2 бита)
8
0/1
```

2.4 Контроль ошибок

2.4.1 Pexum ASCII

Продольный контроль четности (LRC): выполняется с пакетом данных ASCII, исключив стартовый символ, и исключив CRLF пару в конце пакета.

LRC вычисляется путем добавления друг к другу последовательных 8-ми битовых байтов пакета, отбрасывая несущие, и дополняя результат.

Алгоритм генерации LRC:

- 1. Сложить все байты пакета, исключив стартовый символ, и исключив CRLF пару в конце пакета, складывая их так, что бы перенос отбрасывался.
- 2. Отнять получившееся значение от числа FF.
- 3. Прибавить 1 к получившемуся значению.

2.4.2 Режим RTU

Циклический контроль четности (CRC): Поле CRC состоит из двух байтов, содержащих 16-ти битовое двоичное значение.

CRC начинается с записи 16-ти разрядного числа в регистр. Затем начинается процесс сложения последовательных 8-ми битных байт. Только восемь бит данных в в каждом символе используются для генерирования CRC. Стартовый и конечный биты, и бит четности не применяются в CRC.

Алгоритм генерации CRC:

- 1. Запись 16-ти разрядного числа (FFFF hex). Чтение этого регистра CRC.
- 2. Сложение первых восьми битных байт и старшего байта 16-ти битного регистра CRC с помощью логической функции (XOR). Результат записывается в в регистр CRC.
- Результат сдвигается на один двоичный разряд в направлении младшего бита, с заполнением нулем старшего бита.
- 4. (Если младший бит был равен 0): Повторяется шаг 3 (еще один сдвиг).

(Если младший бит был равен 1): Производится сложение с помощью XOR полученного значения и числа A001 hex (1010 0000 0000 0001). Результат записывается в регистр.

5. Повторение шагов 3 и 4 пока 8 сдвигов не будут выполнены. Когда это будет выполнено, 8-ми битный байт будет обработан.

Когда CRC добавляется к сообщению, младший байт добавляется первым, затем следует старший байт

2.4.3 Конвертор протокола

Достаточно легко преобразовать команду RTU в команду ASCII следуя данному перечню:

Используйте LRC заменяя CRC.

Преобразуйте каждый байт из команды RTU в соответствующие два байта ASCII.

Например: преобразуем 0x03 в 0x30, 0x33 (ASCII код для 0 и ASCII код для 3).

Добавить символ двоеточие (:) (ASCII 3A hex) в начало сообщения.

Закончить парой 'возврат каретки/перевод строки' (CRLF) (ASCII 0D и 0A hex).

Таким образом, мы преобразовали команду RTU. Если вы используете ASCII, для конвертации вы можете выполнить эти действия в обратном порядке.

2.5 Тип команд и формат

2.5.1 Перечень функциональных кодов.

код	название	описание
03	Чтение регистров хранения	Чтение двоичного контента регистров хранения во вторичном.
		(менее 10 регистров за один раз)
06	Предустановка регистра	Предустанавливает значение в регистр хранения

2.5.2 Адреса и значение

Ниже описывается установка параметров рабочего состояния инвертора и связанных с ним параметров.

Описание правила присвоения адреса параметра:

1) Применение кода функции как адрес параметра

Общий ряд:

Старший байт: 01~0А (шестнадцатеричный)

Младший байт: 00~50 (макс. диапазон) (шестнадцатеричный) Диапазон кодов разных разделов не одинаковый. Особенности диапазона см. в руководстве.

Например: адрес параметра F114 есть 010E (шестнадцатеричный).

адрес параметра F201 есть 0201 (шестнадцатеричный).

Для разряда Н, преобразуйте НО в 43.

Например: адрес параметра Н014 есть 430Е.

Примечание: в данном случае, возможно прочитать шесть кодов и записать только один код.

Некоторые коды могут быть только проверены, но не могут быть изменены; некоторые коды не могут быть ни проверены, ни изменены; некоторые коды не могут быть изменены в состоянии работы; некоторые параметры не могут быть изменены ни в состоянии работы ни в состоянии ожидания.

В случае изменения всех параметров, диапазон, единице измерения и инструкции см. в руководстве к инвертору соответствующей серии. В противном случае возможен непредсказуемый результат.

2) Применение разных параметров как адрес параметра

(Адреса и описание параметров в шестнадцатеричном формате, например, десятичное число 4096 представлено шестнадцатеричным 1000).

1. Параметры рабочего состояния

Адрес параметра	Описание параметра (только чтение)					
1000	Частота на выходе					
1001	Напряжение на выходе					
1002	Ток на выходе					
1003	Число полюсов/ режим управления, ст байт-режим управления.	гарший байт – число полюсов, младший				
1004	Напряжение на шине					
1005	Передаточное число/состояние инвер	тора				
	старший байт –передаточное отношение, младший байт- состояние инвертора Состояние инвертора:					
	0Х00: Ожидание 0Х01: Вперед	0X11: Err4 0X12: OC1 0X13:PF0 0X14: Защита аналогового				
'	0Х02: Реверс 0Х04: Высокий ток (ОС)	соединения (AErr)				
	0X05: DC высокий ток (OE)	0X15: EP3				
	0X06: Обрыв фазы на входе (PF1)	0X16: Отсутствует нагрузка (EP) 0				
	0X07: Перегрузка (OL1)	X17: PP				
	0X08: Низкое напряжение (LU)	0X18: Высокое давление (nP)				
	0Х09: Перегрев (ОН)	0X19: не правильные парметры PID				
	ОХОА: Перегрузка мотора (OL2)	(Err5)				
	0X0B: Помехи (Err)	0X2D: Таймаут связи (CE)				
	0X0D: Внешняя неисправность (ESP) 0X0E: Err1 0X0F: Err2 0X10: Err3	0X31: Ошибка контроля (Err6)				

Апрос парамотра	Описание параметра (тол	ько чтение)					
Адрес параметра 1006	Процент крутящего момен						
1006	Температура инвертора	iu					
1007	Заданное значениеPID						
1009	Значение обратной связи Р	D					
100A	Чтение целого значения мо						
100B	Состояние терминала DI: D	I1~DI8—bit0~bit7					
1000	Состояние выходного терм	инала :					
100C	bit0-OUT1 bit1-OUT2 bit2-	HE MCDUSEHOCTE DE DE					
100D		ия входящего аналогового сигнала					
100E	AI2: 0~4095 чтение значен	ия входящего аналогового сигнала					
100F	AI3: 0~4095 чтение значен	ия входящего аналогового сигнала					
1010	Зарезервировано						
1011	0~100.00% процент входя <u>г</u>	цего импульса					
1012	0~100.00% процент выход	ящего импульса					
-	Мониторинг скорости.						
	0000 : нет функции	1000 : скорость 8					
	0001 : скорость 1	1001 : скорость 9					
	0010 : скорость 2	1010 : скорость 10					
1013	0011 : скорость 3	1011 : скорость 11					
	0100 : скорость 4	1100 : скорость 12					
	0101 : скорость 5	1101 : скорость 13					
	0110 : скорость 6	1110 : скорость 14					
	0111 : скорость 7	1111 : скорость 15					
1014	Мониторинг значения внег	шнего счетчика					
1015	Мониторинг, процент анал	огового выхода, АО1 (0~100.00)					
1016	Мониторинг, процент анал	огового выхода, АО2 (0~100.00)					
1017	Мониториг текущей скорос	сти.					
1018	Read accurate power value,	and correct the power to 1 decimal place.					
	Ток на выходе (кода ток сл	ишком высокий, данные перетекают из 1002)					
101A	101А: старшие 16 бит тока на выходе						
	101В: младшие 16 бит тока на выходе						
101B							
101C	Скорость передачи данных	(

Команды управления

Инвертор готов

101D

Адрес параметра	Описание параметра (только запись)	
	Значение команды: 0001: Вперед (без параметров)	0007: Зарезервировано
	0002: Реверс (без параметров)	0008: Пуск (без направления) 0009: Сброс ошибки
2000	0003: Остановка с торможением 0004: Свободная остановка	000А: Толчок назад пуск
	0005: Толчок вперед пуск	000В: Толчок назад стоп
	0006: Толчок вперед стоп	000С: Пробуждение

Адрес параметра	Описание параметра (только запись)
	Параметры блокировки
	0001: Система заблокирована (дистанционный пульт управления заблокирован)
2001	0002: Дистанционное управление заблокировано (любые команды дистанционного управления не активны до разблокирования)
	0003: Разрешена запись в RAM и eeprom.
	0004: Разрешена запись только в RAM, запись в еергот запрещена.
	Процент на выходе AO1 заданный PC/PLC.
2002	Диапазон значений: 0~1000
	Значение аналогового выхода 0~100.0%.
	Процент на выходе AO2 заданный PC/PLC.
2003	Диапазон значений: 0~1000
	Значение аналогового выхода 0~100.0%.
	Процент на выходе FO заданный PC/PLC.
2004	Диапазон значений: 0~1000
	FO token output pulse is 0~100.0%.
	Управление многофункциональным выходным терминалом:
2005	1 выход активен.
	·'
2006	0 выход не активен.
7.7.7	
2007	
2009	Напряжение заданное PC/PLC при V/F разделении.

Несанкционированный отклик при чтении параметров

	Описание команды	Функция	Данные	
ı			Значение команды:	1
	Отклик параметра		0001: код функции	
	ведомого Slave parameters re-	Старший байт меняется на 1.	0002: адрес	
	sponse		0003: данные	l
			0004: Ошибка ведомого прим. 2	

Примечание 2: Несанкционированный отклик 0004 появляется в 2-х случаях:

1.Не сбрасывать ошибку, если инвертор в состоянии ошибки.

2.Не разблокировать инвертор, если он заблокирован.

2.5.3 Дополнительные замечания

Выражения во время передачи данных:

Значение параметра частоты = текущее значение X 100 (General Series)

Значение параметра частоты = текущее значение X 10 (Medium Frequency Series)

Значение параметра времени= текущее значение Х 10

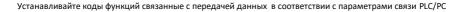
Значение параметра тока= текущее значение Х 10

Значение параметра напряжения= текущее значение Х 1

Значение параметра мощности= текущее значение Х 100

Значение параметра придаточного числа= текущее значение Х 100

Значение параметра версия прошивки No. = текущее значение X 100

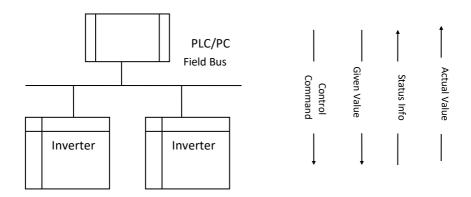

Описание: Значение параметра это значение посланное в пакете данных. Текущее значение это текущее значение инвертора. После того как PC/PLC получит значение параметра, он будет разделено на соответствующий коэффициент, что бы получить текущее значение.

NOTE: Take no account of radix point of the data in the data package when PC/PLC transmits command to inverter. Допустимое значение от 0 до 65535.

2200 0000

III Коды функций связанные с передачей данных

Код функции Определение функции		Диапазон значений	Заводское значение
F200	Источник управления пуском	0: Клавиатура; 1: Терминал; 2: Клавиатура+Терминал; 3:MODBUS; 4: Клавиатура+Терминал+MODBUS	4
F201	Источник управления остановкой	0: Клавиатура; 1: Терминал; 2: Клавиатура+Терминал; 3:MODBUS; 4: Клавиатура+Терминал+MODBUS	4
F203	Источники основной частоты Х	0: заданное цифровое значение с памятью; 1: Внешний аналоговый сигнал AI1; 2: Внешний аналоговый сигнал AI2; 3: Входящий импульс; 4: Многоскоростное управление; 5: заданное цифровое значение без памяти; 6: Потенциометр; 7: Резерв; 8: Резерв; 9: PID регулирование; 10: MODBUS	0
F900	Адрес инвертора	1~255	1
F901	Режим связи	1: ASCII 2: RTU	2
F903	Четность	0: выкл 1: нечетный 2: четный	0
F904	Скорость передачи	0: 1200 1: 2400 2: 4800 3: 9600 4: 19200	3



IV Физический интерфейс

4.1 Описание

Интерфейс связи RS485 с левой стороны

Схема соединения полевой шины

На инверторах серии E2000 реализована RS485 полудуплексная связь. Шлейфовая (последовательная) структура реализована на шине 485. Не применяйте ответвленные линии или звездообразную конфигурацию. Отраженный сигнал, который производится ответвленными линиями или звездообразной конфигурацией, будет создавать помехи.

Только один инвертор одновременно может обмениваться данными с PC/PLC при полудуплексной связи. Если от двух или более инверторов загружать данные одновременно, возникнет конфликт на шине, который приведет не только к потери связи, но и высокому току некоторых элементов.

3. Заземление и терминал

Чтобы уменьшить отражение сигнала, для терминала RS485 должно применяется сопротивление терминала 120. Сопротивление терминала не должно применятся для промежуточных сетей. Не допускается прямое заземление сети. Все оборудование, подключенное к сети, должно быть заземлено самостоятельно через собственные терминалы заземления. Убедитесь, что кабели заземления не

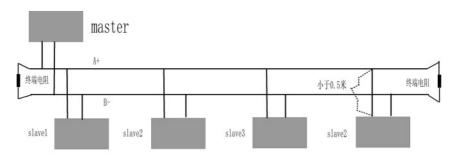


Схема подключения сопротивления

Please think over the drive capacity of PC/PLC and the distance between PC/PLC and inverter when wiring. Добавьте повторители если Add a repeaters if drive capacity is not enough.

Все подключения кабелей должны производится когда при отключенном питании инвертора

Примеры

Пример1: В режиме RTU, изменение времени (F114) на 10.0сек у инвертора NO.01.

Запрос

Адрес	Функция	Адрес регистра Ні	Адрес регистра Lo	Предустановле нные данные Ні	Предустановле нные данные Lo	CRC Lo	CRC Hi
01	06	01	0E	00	64	E8	1E

Код функции F114 Значение: 10.0S

Нормальный отклик

Адрес	Функция	Адрес регистра Ні	Адрес регистра Lo	Предустановле нные данные Ні	Предустановле нные данные Lo	CRC Lo	CRC Hi
01	06	01	OE	00	64	E8	1E

Аномальный отклик

Адрес	Функция	Аномальный код	CRC Lo	CRC Hi
01	86	01	E8	1E

Максимальное значение кода функции = 1. Ошибка ведомого

Пример 2: Чтение частоты на выходе, напряжение на выходе, тока на выходе и скорости вращения инвертора N0.2.

Запрос

Адрес	Функция	Первый адрес регистра Ні	Первый адрес регистра Lo	Счетчик регистра Ні	Счетчик регистра Lo	CRC Lo	CRC Hi
02	03	10	00	00	04	40	FA

Адрес параметра связи 1000Н

Отклик ведомого:

Адрес	Функция	Счетчик байтов	Данные Ні	Данные Lo	Данные Ні	Данные Lo	Данные Ні	Данные Lo	Данные Ні	ДанныеLо	Crc Lo	Crc Hi
2	ω	œ	13	88	1	90	0	3C	2	0	82	F6

Частота на выходе Напряжение на выходе Ток на выходе Количество пар полюсов Режим управления

Частота 50.00Hz, напряжение на выходе 380V, ток на выходе 0.6A, количество пар полюсов 2 и режим управления с клавиатуры инвертора NO.2

Пример 3: Инвертор NO.1 работает вперед.

Запрос:

	Адрес	Функция	Регистр Ні	Регистр Lo	Состояние записи Ні	Состояние записи Lo	CRC Lo	CRC Hi
ľ	01	06	20	00	00	64	E8	1E

Адрес параметра связи 2000Н Вращение вперед

Нормальный отклик ведомого:

Адрес	Функция	Регистр Ні	Регистр Lo	Состояние записи Ні	Состояние записи Lo	CRC Lo	CRC Hi
01	06	20	00	00	01	43	CA

Нормальный отклик

Аномальный отклик ведомого

)	Адрес	Функция	Аномальный код	CRC Lo	CRC Hi
	01	86	01	83	A0

Максимальное значение кода функции =1. Запрещенный код функции (предположительно)

Пример 4: Чтение значений F113, F114 инвертора NO.2

Запрос:

Адрес	Функция	Адрес регистра Ні	Адрес регистра Lo	Счетчик регистра Ні	Счетчик регистра Lo	CRC Lo	CRC Hi
02	03	20	00	00	01	43	CA

Адрес параметра связи F10DH Количество читаемых регистров

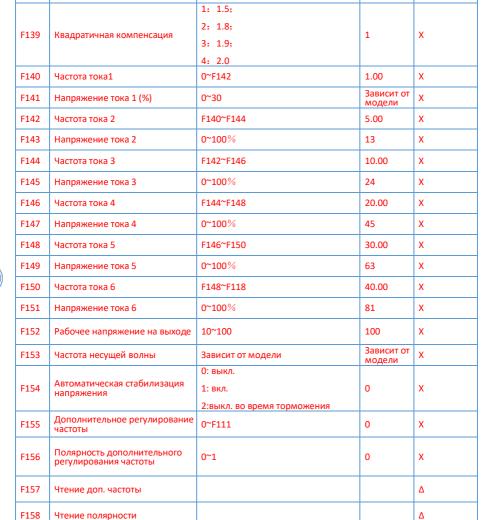
Нормальный отклик ведомого:

Адрес	Функция	Счетчик байтов	Состояние первого параметра Ні	Состояние первого параметра Lo	Состояние второго параметра Ні	Состояние второго параметра Lo	CRC Lo	CRC Hi	
02	03	04	03	E8	00	78	49	61	

Текущее значение= 10.00. Текущее значение= 12.00.

Аномальный отклик ведомого

Адрес	Функция	Аномальный код	CRC Lo	CRC Hi
02	83	08	В0	F6


Приложение 6 Сводная таблица кодов Основные параметры: F100-F160

Код	Описание	Диапазон значений	Заводское значение	Изменение
F100	Пароль пользователя	0~9999	0	٧
F102	Номинальный ток (А)		Зависит от модели	*
F103	Номинальная мощность (kW)		Зависит от модели	*
F104	Зарезервировано			
F105	Прошивка версия No.	1.00~10.00	Зависит от модели	*
F106	Режим управления	0: Бессенсорное векторное управление (SVC); 1: Векторное управление с обратной связью (VC); 2: V/F;	2	X
		3: Векторное управление 1; 6: РМЅМ бессенсорное векторное управление		
F107	Пароль вкл. или выкл.	0: выкл.; 1: вкл.	0	٧
F108	Пароль пользователя	0~9999	8	٧
F109	Стартовая частота (Нz)	0.0~10.00Hz	0.00Hz	٧
F110	Время удержания стартовой частоты (сек)	0.0~999.9	0.0	٧
F111	Макс. частота (Hz)	F113~650.0Hz	50.00	٧
F112	Мин. частота (Hz)	0.00Hz~F113	0.50	٧
F113	Заданная частота (Hz)	F112~F111	50.00	٧
F114	1-е время разгона (сек)	0.1~3000	Зависит от модели	٧
F115	1-е время торможения (сек)	0.1~3000		٧
F116	2-е время разгона (сек)	0.1~3000		٧
F117	1-е время торможения (сек)	0.1~3000		٧
F118	Рабочая частота (Hz)	15.00~650.0	50.00	х
F119	Условие разгона/торможения	0: 0~50.00Hz 1: 0~макс. Частота	0	Х
F120	время задержки при переключении Вперед/ Назад	0.0~3000сек	0.0сек	٧
F121	Зарезервировано			

Диапазон значений

Заводское

значение

0

0

Х

Изменение

Код

Описание

0: выкл;

0: выкл.;

1: сброс

Случайный выбор несущей

Сброс на заводские настройки

F159

F160

волны

Управление в рабочем режиме: F200-F230

Код	Описание	Диапазон значений	Заводское значение	Изменение
F200	Источник управления пуском	0: Клавиатура; 1: Терминал управления; 2: Клавиатура+Терминал; 3:MODBUS; 4: Клавиатура+Терминал+МОDBUS	4	х
F201	Источник управления остановкой	0: Клавиатура; 1: Терминал управления; 2: Клавиатура+Терминал; 3:MODBUS; 4: Клавиатура+Терминал+MODBUS	4	х
F202	Управление направлением вра- щения	0: Вперед; 1: Назад; 2: Управление через терминал	0	X
F203	Источники основной частоты X	0: заданное цифровое значение с памятью; 1: Внешний аналоговый сигнал Al1; 2: Внешний аналоговый сигнал Al2; 3: Входящий импульс; 4: Многоскоростное управление; 5: заданное цифровое значение без памяти; 6: Потенциометр Al3; 7: Зарезервировано; 8: Зарезервировано; 9: PID регулирование; 10: MODBUS	0	x

Код	Описание	Диапазон значений	Заводское значение	Изменение
F204	Источники дополнительной частоты Ү	0: заданное цифровое значение с памятью; 1: Внешний аналоговый сигнал Аl1; 2: Внешний аналоговый сигнал Al2; 3: Входящий импульс; 4: Многоскоростное управление; 5: PID регулирование; 6: Потенциометр Al3;	0	х
	выбор диапазона	0: Относительно максимальной		
F205	регулировки дополнительной	частоты;	0	Х
	частоты Ү	1: Относительно основной частоты X		
F206	диапазон регулировки дополни- тельной частотыҮ	0~100%	100	х
F207	Выбор источника частоты	0: X; 1: X+Y; 2: X или Y (терминальное переключение); 3: X или X+Y (терминальное переключение); 4: Комбинация многоскоростного и налогового 5: X-Y 6: X+Y-Y _{MAX} *50%	0	X
F208	Режим работы контактов терми- нала управления	0: Функция не активна; 1: Две линии, режим 1; 2: Две линии, режим 2; 3: Три линии, режим 1; 4: Три линии, режим 2; 5: Пуск/Стоп управляется направленным импульсом	0	х
F209	Способ остановки мотора	0: остановка по времени торможения; 1: свободная остановка	0	Х
F210	Точность регулировки частоты	0.01~2.00	0.01	٧
F211	Скорость изменения частоты	0.01~100.00Hz/сек	5.00	٧
1				

F212

Память направления вращения

0: выкл. 1: вкл.

0

F213	Автостарт	0: выкл. 1: вкл.	0	٧
F214	Автостарт после сброса ошибки	0: выкл. 1: вкл.	0	٧
F215	Время задержки автостарта	0.1~3000.0	60.0	٧
F216	Количество автостартов в случае повторяющихся ошибок	0~5	0	٧
F217	Время задержки сброса ошибки	0.0~10.0	3.0	٧
F218	Зарезервировано			
F219	Запоминание параметров EEPROM	0:запись возможна 1:запрет записи	1	٧
F220	Запоминание частоты после отключения питания	0: выкл. 1: вкл.	0	٧
F221	Зарезервировано			
F222	Запоминание значения счетчика	0: выкл. 1: вкл.	0	٧
F224	Если заданная частота меньше минимальной частоты	0: стоп 1: работа на минимальной частоте	0	×
F225~F230	Зарезервировано			

Функции управления перемещением: F235-F280

F235	Режим управления перемещением	0: Выкл.		×
		1: Режим 1	0	
F233		2: Режим 2	0	
		3: Режим 3		
F236	Сканирование позиционирования	0: выкл. 1: вкл.	0	٧
F237	Источник сигнала	0: Авто пуск	0	
FZ5/		1: пуск через терминал Х		
	Режим остановки при достижении длины.	0: Остановка на заданной длине		
		1: Остановка на заданном радиусе намотки	0	×
F238		2: Без остановки на заданной длине, индикация заполнения.		
		3: достижение заданного радиуса, индикация заполнения.		
	Память режима линейного перемещения	0: Память в состоянии ожидания и отсутствии питания		
F239		1: Память в состоянии ожидания.	0	٧
FZ39		2: Память в состоянии отсутствия питания.	U	
		3: Без памяти.		

F240	Предустановленная частота (Hz)	F112~F111	5.00	٧
F241	Время работы на предустановленной частоте (сек)	0~3000.0	0	٧
F242	Центральная частота (Hz)	F243~F111	25.00	٧
F243	Нижний предел центральной частоты (Hz)	F112~F242	0.50	٧
F244	Скорость убывания центральной частоты (Hz / S)	0.100~65.000	0.500	٧
F245~F246	Зарезервировано			
F247	Установка амплитуды	относительно макс. частоты относительно центральной	1	×
	,,,,	частоты		
F248	Амплитуда	0~100.00%	10.00%	٧
F249	Скачек частоты	0~50.00%	30.00%	٧
F250	Время увеличения частоты (сек)	0.1~3000	10.0	٧
F251	Время уменьшения частоты (сек)	0.1~3000	10.0	٧
F252	Частота сканирования позиционирования (Hz)	F112~F111	3.00	٧
F253	Время ожидания сканирования позиционирования (сек)	0.0~3000	5.0	٧
F254	Максимальное время позиционирования (сек)	0.0~3000	10.0	٧
F255~F256	Зарезервировано			
F257	Общая длина (Km)	0.00~6500	0.00	٧
F258	Текущая длина (Km)	0.00~65.00	0.00	٧
F259	Заданная длина (Km)	0.00~65.00	0.00	٧
F260	Количество импульсов счетчика длины	0.01~650.0	1.00	٧
F261~F263	Зарезервировано			
F264	Канал обратной связи заданного радиуса	0: Al11: Al2	0	٧
F265	Отображаемое значение заданного радиуса	0~10000	1000	٧
F266	Выходное напряжение в режиме заданного радиуса (V)	0~10.00	5.00	٧
F267	Гистерезис напряжения сигнала заполнения.	0~10.00	0	٧
F268~F271	Зарезервировано			

F272	Время задержки при обрыве пряжи и запутывании (сек)	0.0~3000.0	0.0	٧
F273~F274	Зарезервировано			
F275	Обнаружение значения частоты	F112~F111	25.00	٧
F276	Обнаружение ширины частоты	0.00~20.00	0.50	٧
F277	Третье время разгона (сек)	0.1~3000	Зависит от модели	٧
F278	Третье время торможения (сек)			٧
F279	Четвертое время разгона (сек)			٧
F280	Четвертое время торможения (сек)			٧

Код	Описание	Диапазон значений	Заводское значение	Изменение
		0: Выкл.;		
		1: сигнал об ошибке;		
		2: частота 1;		
	3: частота 2;			
		4: свободная остановка;		
		5: режим работы 1;		
	6: Зарезервировано			
		7: время переключения разг/торм;		
		8: Достижение установленного значения счетчика;		
		9: Достижение заданного значения счетчика;		
		10: перегрузка инвертора;		
		11: перегрузка мотора;		
		12: срыв/остановка;		
		13: инвертор готов к работе		
		14: режим работы 2;		
		15: достижение частоты;		
5300	Релейный	16: перегрев;		٧
F300	выход	17: высокий скрытый ток	1	
		18: Обрыв аналоговой линии		
		19: Отсутствие нагрузки		
		20: Нулевой ток		
		21: OUT1 управляется через порт		
		22: OUT2 управление по связи		٧
		23: ТА, ТС ошибка релейного выхода управляемого через по связи		
		31: Преобразующий насос работает		
		32: Высокое давление		
		35: Стоп сигнал при заполнении, обрыве пряжи, запутывании и остановка в ручную		
		36: сигнал о заполнении		
		37: сигнал увеличения частоты перемещения		
		38: форма волны на выходе		
		39: Обнаружение значения частоты		
		42: Значение второго мотора		
		43: Таймаут связи 2		
F301	DO1 выход		14	٧
F302	DO2 выход		5	

F312

Код	Описание	Диапазон значений	Заводское значение	Изменение
F303	тип выхода DO	0: уровень 1 : импульс	0	٧
F304	отношение кривой S в начальной стадии	2.0~50.0	30.0	٧
F305	отношение кривой S в конечной стадии	2.0~50.0	30.0	٧
F306	режим разгона/торможения	0: прямолинейный 1: по кривой S	0	×
F307	Характерная частота 1	F112~F111	10.00Hz	٧
F308	Характерная частота 2	F112~F111	50.00Hz	٧
F309	Ширина характерной частоты frequency width (%)	0~100	50%	٧
F310	Characteristic current (A)	0~1000A	Rated current	٧
F311	Characteristic current width (%)	0~100	10	٧

0.00~5.00

0.00

٧

Порог заданной частоты (Hz)

F313	Дискретность счетчика	1~65000	1	V
F314	Установленное значение счетчика	F315~65000	1000	٧
F315	Заданное значение счетчика	1~F314	500	٧
		0: выкл;		
		1: пуск;		
		2: стоп;		
		3: терминал многоскоростной 1;		
		4: терминал многоскоростной 2;		
		5: терминал многоскоростной 3;		
		6: терминал многоскоростной 4;		
		7: сброс ошибки;		
		8: свободная остановка;		
		9: аварийная остановка;		
		10: запрет разгона/торможения;		
		11: толчок вперед;		
F316	терминал DI1	12: толчковый реверс;	11	٧
		13: UP увеличение частоты;		
		14: DOWN уменьшение частоты;		
		15: "FWD" вперед ;		
		16: "REV" реверс;		
		17: трех линейный вход "Х";		
		18: : время переключения разгона/ торможения 1;		
		19: Зарезервировано;		
		20: переключение между скоростью и крутящим моментом		
		21: выбор источника частоты;		
		22: Вход счетчика:		

		23: Сброс счетчика		
		24: режим управления линейным перемещением		
		25:Режим линейного перемещения вкл.		
		26: обрыв пряжи		
		27: запутывание пряжи		
		28: сигнал позиционирования		
		29: сигнал длины пряжи и состояния		
		30: Сигнал отсутствия воды;		
		31: Сигнал наличия воды		
		32: Переключение на пожарное давление;		
		33: Аварийное пожарное управление		
F316	терминал DI1	34: Переключение разгон / торможение 2	11	٧
		37: Нормально открытая РТС термо защита		
		38: Нормально закрытая РТС термо защита		
		49: PID пауза		
		51: Переключение между моторами		
		53: Контроль		
		54: Сброс частоты		
		55: переключение между ручным пуском и авто пуском		
		56: Ручной пуск		
		57: Автопуск		
		58: Направление		
		60: Истекшее время 2		
		61: терминал старт-стоп		
F317	терминал DI2		9	٧
F318	терминал DI3		15	٧
F319	терминал DI4		16	٧
F320	терминал DI5		7	٧
F321	терминал DI6		8	٧
F322	терминал DI7		0	٧
F323	терминал DI8		0	٧
F324	Логика терминала свободной остановки	0: положительный (для нижнего уровня);	0	×
	COUNTODIN	1: отрицательный (для верхнего уровня)		

0

Логика терминала аварийной

	128: o	трицательный DI8		
F400	Нижний предел входа Al1 (V)	0.00~F402	0.04	0
F401	нижний предел частоты входа Al1	0~F403	1.00	٧
F402	Верхний предел входа AI1 (V)	F400~10.00	10.00	0
F403	Верхний предел частоты входа AI1	Max (1.00, F401)~2.00	2.00	٧
F404	Пропорциональность входа AI1 выходу K1	0.0~10.0	1.0	٧
F405	Время фильтрации Al1 (сек)	0.01~10.0	0.10	٧
F406	Нижний предел входа Al2 (V)	0.00~F408	0.04	0
F407	Нижний предел частоты входа AI2	0~F409	1.00	٧
F408	Верхний предел входа AI2 (V)	F406~10.00	10.00	0

16: отрицательный DI532: отрицательный DI664: отрицательный DI6

F325

F432	Выбор аналогового сигнала АО2		1	٧
F433	коэффициент для настройки внешнего вольтметра	0.01~5.00	2.00	X
F434	коэффициент для настройки внешнего амперметра		2.00	Х
F437- F	F439	Зарезервировано		
F440	Мин. Частота входящего импульса FI	0.00~F442	0.00	٧
F441	Нижний предел входа FI	0.00~F443	1.00	٧
F442	Макс. частота входящего импульса FI	F440~100.00	10.00	٧
F443	Верхний предел входа FI	Max (1.00, F441)~2.00	2.00	٧
F444	Зарезервировано			
F445	Фильтрация FI	0~100	0	٧
F446	Мертвая зона ОНz входа FI (KHz)	0~F442Hz (Positive-Negative)	0.00	٧
F447- F	F448	Зарезервировано		
F449	Макс. Частота выходящего импульса FO (KHz)	0.00~100.00	10.00	٧
F450	компенсация импульсного выхода (%)	0.0~100.0	0.0%	٧
F451	Усиление импульсного выхода	0.00~10.00	1.00	٧
F452	Зарезервировано			
		0: Частота		
		1: Ток на выходе		
		2: Напряжение на выходе		
		3: Al1 4: Al2		
F453	Значение импульсного выхода	5: Входящий импульс	0	٧
		6: Крутящий момент		
		7: PC/PLC		
		8: Заданная частота		
F460	Al1режим входа	0: прямолинейный	0	Х
		1: ступенчатый режим		
F461	AI2 режим входа	0: прямолинейный	0	Х
F460	214	1: ступенчатый режим	2.001/	
F462 F463	АІ1 точка А1 напряжение АІ1 точка А1 значение	F400~F464 F401~F465	2.00V 1.20	X
F464	АП точка АТ значение АП точка А2 напряжение	F462~F466	5.00V	X
F465	АІ1 точка А2 значение	F463~F467	1.50	X
F466	AI1 точка А3 напряжение	F464~F402	8.00V	Х
F467	AI1 точка A3 значение	F465~F403	1.80	Х
F468	AI2 точка B1 напряжение	F406~F470	2.00V	Х
F469	AI2 точка В1 значение	F407~F471	1.20	X
F470	AI2 точка B2 напряжение	F468~F472	5.00V	X
E/171	A12 TOURS P2 SUSUOURS	E460~E472	1 50	
F471 F472	AI2 точка B2 значение AI2 точка B3 напряжение	F469~F473 F470~F412	1.50 8.00V	X

Многоскоростное управление: F500-F580

		0: 3- х скоростной;		
F500	Тип управления	1: 15-ти скоростной;	1	
		2: автоматический	7 0 5.00Hz 10.00Hz 15.00Hz 20.00Hz 25.00Hz 30.00Hz 35.00Hz 10.00Hz 15.00Hz 20.00Hz 25.00Hz 35.00Hz 0.00Hz 20.00Hz 35.00Hz 30.00Hz 35.00Hz 36.00Hz 36.00Hz 37.00Hz 38.00Hz 38.00Hz 38.00Hz 38.00Hz 38.00Hz 38.00Hz 38.00Hz	
F501	Выбор количества скоростей в автоматическом режиме	2~8	7	٧
F502	Количество циклов	0~9999(если значение установлено на 0, то совершит бесконечное количество циклов)	0	ν
F503	Состояние после отработки заданного количества циклов	0: Стоп 1: Работа на последней скорости	0	٧
F504	Частота для скорости 1	F112~F111	5.00Hz	١
F505	Частота для скорости 2	F112~F111	10.00Hz	١
F506	Частота для скорости 3	F112~F111	15.00Hz	١
F507	Частота для скорости 4	F112~F111	20.00Hz	١
F508	Частота для скорости 5	F112~F111	25.00Hz	١
F509	Частота для скорости 6	F112~F111	30.00Hz	١
F510	Частота для скорости 7	F112~F111	35.00Hz	١
F511	Частота для скорости 8	F112~F111	40.00Hz	١
F512	Частота для скорости 9	F112~F111	5.00Hz	١
F513	Частота для скорости 10	F112~F111	10.00Hz	١
F514	Частота для скорости 11	F112~F111	15.00Hz	١
F515	Частота для скорости 12	F112~F111	20.00Hz	,
F516	Частота для скорости 13	F112~F111	25.00Hz	١
F517	Частота для скорости 14	F112~F111	30.00Hz	١
F518	Частота для скорости 15	F112~F111	35.00Hz	١
F519-F533	Время разгона с 1 по 15 скорости (Сек.)	0.1~3000сек	от модели инверто	١
F534-F548	Время торможения с 1 по 15 скорости (Сек.)	0.1~3000сек	·	١
F549-F556	Направление вращения с 1 по 8 скорости	0: вперед;	0	,
F557-F564	Время работы с 1 по 8 скорости (Сек.)	1: реверс 0.1~3000сек	1.0сек	١
F565-F572	Время переключения с 1 по 8 скорости (Сек.)	0.0~3000сек	0.0сек	,
F573-F579	Направление вращения с 9 по 15 скорости	0: вперед; 1: реверс	0.0000	,
F580	Режим скорости	0: Режим 1 1: Режим 2	0	١

Вспомогательные функции: F600-F650

F600	Выбор DC торможения	0: выкл.; 1:торможение перед стартом; 2:торможение во время остановки; 3:торможение во время старта и остановки	0	٧
F601	Частота торможения	0.20~50.00	1.00	٧
F602	Эффективность торможения перед стартом	0~100	10	٧

F603	Эффективность торможения во время остановки	0~100	10	٧
F604	Продолжительность торможения перед стартом	0.0~30.00	0.50	٧
F605	Время торможения во время остановки	0.0~30.00	0.50	٧
F607	Выбор функции ограничения	0~2: Зарезервировано З: ограничение напряжение/ток 4: Ограничение напряжения 5: Ограничение тока	3	٧
F608	Ограничение тока (%)	60~200	160	٧
F609	Ограничение напряжения (%)	110~200	1- phase: 130 3- phase: 140	٧
F611	Динамический порог торможения (V)	200~2000	Зависит от модели инверт ора	Δ
F612	Коэффициент заполнения динамического торможения (%)	0~100	100	X
F613	Подхват налету	0: выкл. 1: вкл. 2: активен при	0	X
F614	Режим подхвата налету	Диапазон значений: 0: Подхват налету с поиском с запомненной частоты 1: Подхват налету с поиском с нуля. 2: Подхват налету с поиском с максимальной частоты	0	×
F615	Диапазон значения подхвата налету	1~100	20	X
F641	Ингибирование колебаний тока при низкой частоте	0: выкл. 1: вкл.	Зависит от модели инверт ора	
F657	Мгновенная потеря питания	0: выкл. 1: вкл.	0	×
F658	Время ускорения напряжения	0.0~3000сек 0.0: F114	0.0	٧
F659	Время торможения напряжения	0.0~3000сек 0.0: F115	0.0	٧
F660	Порог падения напряжения	200~F661	Зависит от модели инверт ора	×
F661	Action stop voltage at instantaneous power failure	F660~1300	Зависит от модели инверт ора	× O

F671	источник напряжения для V/F разделения	0: F672 1: Al1 2:Al2 3: Al3 4: настройка через связь 5: настройка импульсом 6: PID 7~10: зарезервировано	0	×
F672	Цифровая настройка напряжения для V/F разделения	0.00~100.00	100.00	٧
F673	Нижний предел напряжения V/F разделения (%)	0.00~F633	0.00	×
F674	Верхний предел напряжения V/F разделения (%)	F632~100.00	100.00	×
F675	Время повышения напряжения V/F разделения (Сек)	0.0~3000.0	5.0	٧
F676	время понижения напряжения V/F разделения (Сек)	0.0~3000.0	5.0	٧
F677	Режим остановки при V/F разделении	0: понижение напряжения и частоты до 0 согласно соответствующего времени 1: Понижение напряжения до 0 первым 2: Понижение частоты до 0	0	×
Управлени	е по времени и защита: F700-F760	первым.		

F700	Выбор типа свободной остановки	0: немедленная свободная остановка; 1: задержка свободной остановки	0	٧
F701	Время задержки свободной остановки	0.0∼60.0сек	0.0	٧
F702	Режим работы вентилятора	0: контроль температуры 1: Включен когда инвертор включен. 2: Комбинированное управление	2	×
F703	Заданная температура	0~100°C	45° C	X
F704	Предварительная тревога перегрузки инвертора	50~100	80	
F705	Предварительная тревога перегрузки мотора	50~100	80	X
F706	Коэффициент перегрузки инвертора (%)	120~190	150	X
F707	Коэффициент перегрузки мотора (%)	20~100	100	X

	I	2: Повышенный ток (ОС)		
		3: Повышенное напряжение (ОЕ)		
		4: Обрыв фазы на входе (PF1)		
		5: Перегрузка инвертора (ОL1)		
		6: Низкое напряжение (LU)		
		7: Перегрев (OH)		
		8: Перегрузка мотора (OL2)		
		11: внешняя неисправность (ESP)		
		13. мотор не подключен (Err2)		
F708	Последняя ошибка			Δ
1708	Последний ошиока	16: Повышенный ток 1 (OC1)		Δ
		17: Обрыв фазы на выходе (РF0)		
		18: Обрыв аналоговой линии		
		20: ЕР/ЕР2/ЕР3 нет нагрузки		
		22: nP достижение давления		
		23: Err5 не правильные параметры PID		
		45: Таймаут соединения (СЕ)		
		46: Ошибка подхвата (FL)		
		49: Ошибка контроля (Err6)		
F709	Предпоследняя ошибка			Δ
F710	Предпредпоследняя ошибка			Δ
F711	Частота последней ошибки			Δ
F712	Ток последней ошибки			Δ
F713	Напряжение последней ошибки			Δ
F714	Частота предпоследней ошибки			Δ
F715	Ток предпоследней ошибки			Δ
F716	Напряжение предпоследней ошибки			Δ
F717	Частота предпредпоследней			Δ
F718	Ток предпредпоследней ошибки			Δ
F719	Напряжение предпредпоследней ошибки			Δ
F720	Количество ошибок повышенного тока			Δ
F721	Количество ошибок повышенного напряжения			Δ
F722	Количество перегревов			Δ
F723	Количество перегрузок			Δ
F724	Контроль пропадания фазы питания	0: выкл; 1: вкл.	1	×
F725	Контроль низкого напряжения	0: выкл; 1: вкл.	1	X
F726	Контроль перегрева	0: выкл; 1: вкл.	1	X
F727	Контроль пропадания фазы на выходе	0: выкл; 1: вкл.	0	X
F728	Фильтрация пропадания фазы	0.1~60.0	0, 5	٧

٧
, , , , , , , , , , , , , , , , , , ,
٧
о ввер-
Δ
٧
0
0
٧
٧
×
X
٧
*

Параметры мотора: F800-F830

		0: Выкл.;		
F800	Настройка параметров	1: Динамическая настройка;	0	\times
		2: Статическая настройка		
F801	Мощность	0.1~1000.0		\times
F802	Напряжение	1~1300		\times
F803	Ток	0.2~6553.5		\times
F804	Число полюсов	2~100	4	X
F805	Скорость вращения	1~30000		X
FOOC	6	0.001~65.53Ω (для 15kw и менее 15kw)	Зависит от	\ <u>\</u>
F806	Сопротивление статора	0.1~6553mΩ (более 15kw)	модели инвертора	X

		0.001~65.53Ω (для 15kw и менее 15kw)	Зависит от	
F807	Сопротивление ротора	0.1~6553mΩ (более 15kw)	модели инвертора	X
F808	Индукция утечки	0.01~655.3mH (для 15kw и менее 15kw)	Зависит от модели	×
		0.001~65.53mH (более 15kw)	инвертора	
F809	Взаимная индуктивность	0.1~6553mH (для 15kw и менее 15kw) 0.01~655.3mH (более 15kw)	Зависит от модели инвертора	X
F810	Частота	1.00~650.00	50.00	X
	Предустановленное	1.00 030.00	30.00	
F812	время Значение	0.00~30.00сек	0.30	٧
F813	пропорциональной составляющей КР1	1~100	30	٧
F814	Значение интегральной составляющей KI1	0.01~10.00	0.50	٧
F815	Значение пропорциональной	1~100	Зависит от модели	٧
F816	Значение интегральной составляющей KI2	0.01~10.00	1.00	٧
F817	Частота PID переключения 1	0~F818	5.00	٧
F818	Частота PID переключения 2	F817~F111	10.00	٧
F819	Коэффициент скольжения	50~200	100	٧
F820	Коэффициент фильтрации обратной связи	0~100	0	٧
F844	Ток без нагрузка (А)	0.1~F803	Зависит от модели инвертора	× •
F851	Разрешение энкодера	1~9999	1000	X
F854	Последовательность фаз энкодера	0: вперед	0	X
F870	электродвижущая сила PMSM (mV/rpm)	1: назад 0.1~999.9 (значение между линиями)	100.0	×
F871	PMSM D- аксиальная индукция (mH)	0.01~655.35	5.00	×
F872	PMSM Q- аксиальная индукция (mH)	0.01~655.35	7.00	×
F873	Сопротивление статора PMSM (Ω)	0.001~65.000 (phase resistor)	0.500	X
F876	PMSM ток инжекции без нагрузки (%)	0.0~100.0	20.0	×
F877	PMSM компенсация тока инжекции без нагрузки (%)	0.0~50.0	0.0	×
F878	РМSМ точка отсечения компенсации тока инжекции без нагрузки (%)	0.0~50.0	10.0	×
F879	PMSM ток инжекции с большой нагрузкой (%)	0.0~100.0	0.0	×
F880	PMSM PCE время обнаружения (сек)	0.0~10.0 сек	0.2	×
Парамет	ры связи: F900-F930			
F900	Номер порта	1~255: адрес инвертора	1	٧
1 300	помер порта	0: общий адрес		*

F901	Режим связи	1: ASCII 2: RTU	2	٧
		3: Удаленная панель управления		V
F902	Стоповый бит	1~2	2	٧
F903	Четность	0: выкл 1: нечетный 2: четный	0	٧
F904	Скорость передачи	0: 1200; 1: 2400; 2: 4800; 3: 9600 ; 4: 19200 5: 38400 6: 57600	3	٧
F905	Время тайм-аута (сек)	0.0~3000.0	0.0	٧
F907	Время 2 тайм-аута (сек)	0.0~3000.0	0.0	٧
F911	соединение точка-точка	0:выкл. 1:вкл.	0	×
F912	Первичный/вторичный	0:Первичный 1:Вторичный	0	×
F913	Команда вторичного	0:Вторичный не отзывается на команды первичного 1: Вторичный отзывается на команды первичного	1	×
F914	Инвормация о неисправности вторичного	Единицы: Информация о неисправности вторичного 0: Не отправляется информация 1: Отправляется информация Десятки: действие первичного при пропадании отклика вторичного 0: нет действий 1:тревога	1	٧
F915	Действия первичного при неисправности вторичного.	0: продолжает работать 1: свободная остановка 2: торможение до полной остановки	1	٧
F916	Действие вторичного когда первичный остановлен	1: Свободная остановка 2: торможение до полной остановки	1	٧
F917	Выполнение вторичным команд первичного	0: крутящий момент 1: частота 1(отклонение) 2: частота 2 (отклонение)	0	×
F918	Смещение нуля полученных данных (крутящий момент)	0~200.00	100.00	٧
F919	Усиление полученных данных (крутящий момент)	0.00~10.00	1.00	٧
F920	Смещение нуля полученных данных (частота)	0~200.00	100.00	٧
F921	Усиление полученных данных (частота)	0.00~10.00	1.00	٧
F922	окно	0.00~10.00	0.50	٧
F923	Управление отклонением	0.0~30.0	0.00	٧
F924	Время таймаута соединения (сек)	0.0~3000.0	0	٧
F925	Интервал отправки данных от первичного (сек)	0.000~1.000	0	٧
F926	CAN скорость передачи (kbps)	0:20 1:50 2:100 3:125 4: 250 5:500 6:1000	6	٧

Параметры PID регулирования: FA00-FA80

		0: Один насос (PID регулирование)		
FA00	Режим водоснабжения	1: Фиксированная установка	0	X
		2: Работа по времени		
		0: FA04 1: Al1 2: Al2		
FA01	источник задания установки PID	3: AI3 (потенциометр)	0	X
		4: FI (импульсный вход) 1: AI1 2: AI2		
FA02	Источник обратной связи	3: FI (импульсный вход)	0	٧
		4: зарезервировано		
	Максимальное значение	5: Ток нагрузки		
FA03	PID (%)	FA04~100.0	100.0	٧
FA04	Цифровое значение установки PID (%)	FA05~FA03	50.0	٧
FA05	Минимальное значение PID (%)	0.0~FA04	0.0	٧
FA06	PID полярность	0: Положительная обратная связь	1	×
FAUU	гір полярность	1: Негативная обратная связь	1	
FA07	Функция покоя	0: вкл. 1: Выкл.	1	X
FA09	Мин. частота PID регулирования (Hz)	Max(F112, 0.1)~F111	5.00	٧
FA10	Время задержки покоя (сек.)	0~500.0	15.0	٧
FA11	Время задержки пробуждения (сек.)	0.0~3000	3.0	٧
FA12	Макс. Частота PID (Hz)	FA09~F111	50.00	٧
FA18	Изменение PID установки	0: выкл. 1: вкл.	1	X
FA19	Пропорциональность усиления Р	0.00~10.00	0.30	٧
FA20	Время интегрирования I (сек)	0.0~100.0	0.3	٧
FA21	Время дифференцирования(сек)	0.0~10.0	0.0	٧
FA22	PID время реакции (сек)	0.1~10.0	0.1	٧
FA23	PID отрицательная частота	0: выкл. 1: вкл.	0	٧
FA24	Выбор единицы измерения таймера	0: часы 1: минуты	0	X
FA25	Время переключения	1~9999	100	X
		0: нет защиты		
FA26	Режим защиты отсутствия	1: контактор	0	×
1720	нагрузки	2: PID		
		3: защита по току		
FA27	Пороговое значение тока защиты (%)	10~150	80	٧

FA29	PID мертвая зона (%)	0.0~10.0	2.0	٧
FA30	Рабочий интервал перезапуска преобразующего насоса (сек)	2.0~999.9s	20.0	٧
FA31	Время задержки пуска основного насоса (сек)	0.1~999.9s	30.0	٧
FA32	Время задержки остановки основного насоса (сек)	0.1~999.9s	30.0	٧
FA33	Режим остановки	0: свободная остановка 1: остановка с торможением	0	×
FA36	Реле No.1	0: выкл. 1: вкл.	0	X
FA37	Реле No.2	0: выкл. 1: вкл.	0	X
FA47	Последовательность старта реле No 1	1~20	20	X
FA48	Последовательность старта реле No 2	1~20	20	X
FA58	Пожарное давление (%)	0.0~100.0	80.0	٧
FA59	Режим пожара	0: выкл. 1: Режим пожара 1 2: Режим пожара 2	0	٧
FA60	Пожарная частота	F112~F111	50.00	٧
FA62	при выключенном. пожарном терминале	0~1	0	
FA66	Время защиты отсутствия нагрузки (сек)	0~60	20.0	٧
FA67-F	FA80	Зарезервировано		

Параметры управления крутящим моментом: FC00-FC40

		0: управление скоростью	0	
FC00	выбор управления	1: управление моментом		٧
		2: терминальное переключение		
FC02	Время разг/тормож. (сек)	0.1~100.0	1	٧
FC03-F	C05	Зарезервировано		
		0: цифровой (FC09)		
		1: Аналоговый вход AI1		
FC06	Источник заданного	2: Аналоговый вход AI2	0	
PCOO	момента	3: Аналоговый вход Al3	0	
		4: Импульсный вход FI		
		5: Зарезервировано		
FC07	Коэффициент заданного момента	0~3.000	3.000	X
FC08	Зарезервировано			
FC09	Значение команды (%)	0~300.0	100.0	٧
FC10- I	FC13	Зарезервировано		

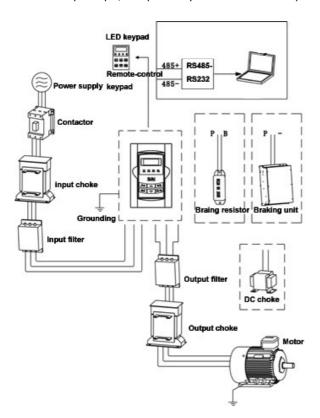
		0: Цифровой (FC17)		
		1: Аналоговый вход АІ1		
		2: Аналоговый вход Al2		
FC14	Компенсация момента	3: Аналоговый вход AI3	0	X
		4: Импульсный вход FI		
FC15	Коэффициент	5: Зарезервировано 0~0.500	0.500	X
FC16	компенсации Частота (%)	0~100.0	10.00	X
FC10	Значение команды	0~50.0	10.00	V
FC18-	компенсации (%)	0 30.0	10.00	V
FC21	Зарезервировано			
FC21		0: Цифровой (FC23)		
		1: Аналоговый вход АІ1		
		2: Аналоговый вход AI2		
FC22	Источник ограничения скорости вперед	3: Аналоговый вход АІЗ	0	X
		4: Импульсный вход FI		
		, , , , , , , , , , , , , , , , , , , ,		
FC23	Ограничение скорости	5: Зарезервировано 0~100.0	10.00	V
FC23	вперед (%)	0~100.0 0: Цифровой (FC25)	10.00	٧
	Источник ограничения скорости назад	1: Аналоговый вход Al1		
FC24		2: Аналоговый вход AI2	0	X
		3: Аналоговый вход AI3		
		4: Импульсный вход FI		
		5: Зарезервировано		
FC25	Ограничение скорости назад (%)	0~100.0	10.0	٧
FC26-	FC27	Зарезервировано		
		0: Цифровой (FC30)		
		1: Аналоговый вход АІ1		
	Источник ограничения	2: Аналоговый вход АІ2		
FC28	Источник ограничения момента	3: Аналоговый вход АІЗ	0	X
		4: Импульсный вход FI		
FC29	Коэффициент	5: Зарезервировано 0~3.000	3.000	×
FC30	ограничения момента Ограничение момента (%)	0~300.0	200.0	√
FC31	Зарезервировано	0 300.0	200.0	· ·
FC32	Зарезервировано			
		0: Цифровой (FC35)		
		1: Аналоговый вход AI1		
	Источник тормозящего	2: Аналоговый вход AI2		\/
FC33	момента	3: Аналоговый вход AI3	0	X
		4: Импульсный вход FI		
		5: Зарезервировано		
		э. эареэервировано		

FC34	Коэффициент тормозящего момента	0~3.000	3.000	X
FC35	Ограничение тормозящего момента (%)	0~300.0	200.00	٧
FC48	Переключение момента	0: выкл. 1: вкл.	0	×
FC49	Точка ограничения 2 (%)	50~200	120	٧
FC50	Точка переключения частоты 1(Hz)	1.00~FC51	15.00	٧
FC51	Точка переключения частоты 2(Hz)	FC50~F111	30.00	٧

Параметры второго мотора: FE00-FE60

		Единицы: выбор мотора		
		0: мотор No. 1		
		<u>'</u>		
		1: мотор No. 2		
		2: Терминальное переключение		
FE00	Переключение мотора	Десятки: режим управления мотора No.2	20	×
FEUU	переключение могора	0: безсенсорное векторное управление (SVC)	20	_ ^
		1: Векторное управление с обратной связью (VC)		
		2:V/F управление		
		3:векторное управление 1		
FE01	Мощность мотора 2 (kW)	0.1~1000.0	Зависит от модели инвертора	×
FE02	Напряжение питания(V)	1~1300		×
FE03	Номинальный ток(А)	0.2~6553.5		×
FE04	Число полюсов	2~100	4	×
FE05	Скорость вращения (об/ мин)	1~30000	Зависит от модели инвертора	×
FE06	Сопротивление статора (Ω)	0.001~65.53Ω (≤15kW) 0.1~6553mΩ(>15kW)	Зависит от модели	×
	. ,	0.1 65531112(≥15kW) 0.001~65.53Ω (≤15kW)	инвертора Зависит от	
FE07	Сопротивление ротора (Ω)	0.1~6553mΩ(>15kW)	модели инвертора	×
	_	0.01~655.3mH (≤15kW)	Зависит от	
FE08	Индукция утечки (mH)	0.001~65.53mH (>15kW)	модели инвертора	×
FF00	Взаимная	0.01~655.3mH (≤15kW)	Зависит от	
FE09	индуктивность (mH)	0.001~65.53mH (>15kW)	модели инвертора	×
FE10	Номинальная частота (Hz)	1.00~650.00	50.00	×
FE11	Ток без нагрузки (А)	0.1~FE03	Зависит от модели инвертора	×
FE12	Тип двигателя	0: Обычный мотор 1: мотор с переменной частотой	1	×
FE13	Мотор 2 значение пропорциональной составляющей КР1	1~100	30	٧

FE15	Motor 2 значение пропорциональной составляющей KP2	1~100	20	٧
FE16	Мотор 2 значение интегральной составляющей KI2	0.01~10.00	1.00	٧
FE17	Мотор 2 частота переключения 1	0.00~F818	5.00	٧
FE18	Мотор 2 частота переключения 2	FE17~F111	10.00	٧
		0: точно такое же как у мотора 1		
FE19	Время разгона/торможения	1: 1 ^е время	0	٧
		2: 2-е время		
FE20	Компенсация крутящего момента	1~20	Зависит от модели инвертора	×
FE21	Коэффициент перегрузки мотора	20~100	100	×
FE22	Мотор 2 порог сигнализации перегрузки двигателя (%)	50~100	80	×
FE23	Коэффициент ингибирования колебаний мотора	0~100	Зависит от модели инвертора	×
FE24	Зарезервировано			
FE25	Мотор 2 Коэффициент фильтрации обратной связи	0~100	0	٧
FE26-FE	32	Зарезервировано		
FE33	Последняя ошибка			Δ
FE34	Предпоследняя ошибка			Δ
FE35	Предпредпоследняя ошибка			Δ
FE36	Частота последней ошибки (Hz)			Δ
FE37	Ток последней ошибки (А)			Δ
FE38	Напряжение последней ошибки (V)			Δ
FE39	Частота предпоследней ошибки (Hz)			Δ
FE40	Ток предпоследней ошибки (А)			Δ
FE41	Напряжение предпоследней ошибки (V)			Δ
FE42	Частота предпредпоследней ошибки (Hz)			Δ
FE43	Ток предпредпоследней ошибки (А)			Δ
FE44	Напряжение предпредпоследней ошибки (V)			Δ
FE45	Количество ошибок повышенного тока			Δ
FE46	Количество ошибок повышенного напряжения			Δ
FE47	Количество перегревов			Δ
FE48	Количество перегрузок			Δ
FE49	Мотор 2 Коэффициент защиты повышенного	0.50~3.00	2.50	×
FE50	Мотор 2 Количество ошибок повышенного тока			Δ
FE51	Мотор 2 Разрешение энкодера	1~9999	1000	×
FE52- FI		Зарезервировано		


Parameters display:

H000	Текущая частота/заданная частота(Hz)	Δ
H001	Текущая скорость/заданная скорость (об/мин)	Δ
H002	Ток на выходе (А)	Δ
H003	Напряжение на выходе (V)	Δ
H004	Напряжение на входе (V)	Δ
H005	обратная связь PID (%)	Δ
H006	Температура (᠒)	Δ
H007	Значение счетчика	Δ
H008	Линейная скорость	Δ
H009	заданное значение PID (%)	Δ
H010	Длина пряжи	Δ
H011	Центральная частота (Hz)	Δ
H012	Мощность на выходе (KW)	Δ
H013	Момент на выходе (%)	Δ
H014	Заданный момент (%)	Δ
H015	Последовательность фаз энкодера	Δ
H016	Зарезервировано	Δ
H017	Текущая скорость для многоскоростного режима	Δ
H018	Частота входящего импульса (0.01KHz)	Δ
H019	Скорость обратной связи (Hz)	Δ
H020	Скорость обратной связи (об/мин)	Δ
H021	напряжение AI1	Δ
H022	напряжение AI2	Δ
H023	напряжение AI3	Δ
H024	Зарезервировано	Δ
H025	Время включенного питания (мин.)	Δ
H026	Время работы (h)	Δ
H027	Частота входящего импульса (Hz)	Δ
H028	Зарезервировано	Δ
H029	Зарезервировано	Δ
H030	Основная частота X (Hz)	Δ
H031	Дополнительная частота Y(Hz)	Δ
H032	Момент посланный первичным	Δ
H033	Частота посланная первичным	Δ
H034	Количество вторичных	Δ
H032- H040	Зарезервировано	Δ

Примечание: × параметры, которые могут изменяться только в режиме ожидания.

√ параметры, которые могут изменяться в режиме ожидания и рабочем режиме.

- Δ параметры, которые могут быть только проверены в режиме ожидания и рабочем режиме, но не могут изменятся.
- о параметры, которые не могут быть сброшены к заводским значениям, но могут изменятся в ручную.
- * параметры, которые могут меняется только производителем.

Приложение 7 Периферийные опции

1. Периферийное подключение

Рисунок	Название	Описание
	Кабель	Устройство для передачи сигнала
	Автомат	Предотвращает от удара током или защищает систему при коротком замыкании. (Выбирайте автомат с функцией погашения высоких гармоник и с чуствительность тока утечки более 30mA)
	Входной дроссель	Устройство используется для копменсации скачков напряжения на входе и сглаживания гармонических скачков на выходе.
	Выходной дроссель	
000	Входящий фильтр	Уменьшает электромагнитные помехи сгенерированные инвертором. Устанавливайте рядом с входящим терминалом инвертора.
0	Тормозной модуль или сопротивление	Уменьшает время торможения.
0-0-0	Output choke	Уменьшает электромагнитные помехи сгенерированные инвертором. Устанавливайте рядом с входящим терминалом инвертора.
	Output choke	Позволяет увеличить расстояние между инвертором и нагрузкой и снижает импульсы высокого напряжения возникающие при переключении IGBT модуля.